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man. Over the past years, technical and data-processing 
methods have advanced steadily, thus enhancing data qual-
ity and expanding the palette of sleep assessment tools that 
can be used to investigate the activity of drugs on the central 
nervous system (CNS), determine the time course of effects 
and pharmacodynamic properties of novel therapeutics, 
hence enabling the study of the pharmacokinetic/pharma-
codynamic relationship, and evaluate the CNS penetration 
or toxicity of compounds. However, despite the presence
of robust guidelines on the scoring of polysomnography 
 recordings, a review of the literature reveals inconsistent 
 aspects in the operating procedures from one study to an-
other. While this fact does not invalidate results, the lack of 
standardisation constitutes a regrettable shortcoming, es-
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  Abstract

  The International Pharmaco-EEG Society (IPEG) presents 
guidelines summarising the requirements for the recording 
and computerised evaluation of pharmaco-sleep data in 
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pecially in the context of drug development programmes. 
The present guidelines are intended to assist investigators, 
who are using pharmaco-sleep measures in clinical research, 
in an effort to provide clear and concise recommendations 
and thereby to standardise methodology and facilitate com-
parability of data across laboratories.

  Copyright © 2013 S. Karger AG, Basel

  Introduction

  Pharmaco-sleep research concerns the description 
and the quantitative analysis of the effects of drugs on the 
central nervous system (CNS) by means of (neuro)physi-
ological methods applied to subjects during a sleep peri-
od within the framework of clinical and experimental 
pharmacology, neurotoxicology, drug research, and as-
sociated disciplines. Such research can have one of a wide 
range of objectives, from providing evidence of efficacy 
to support registration of a new drug, such as a hypnotic, 
or evaluating CNS side effects of a new drug, to providing 
basic pharmacodynamic (PD) data at an early stage in the 
development of a new chemical entity. For the remainder 
of this article, the term ‘pharmaco-sleep’ strictly refers to 
human quantitative polysomnography (PSG) in the con-
text of drug testing. Separate guidelines for the recording 
and evaluation of pharmaco-electroencephalography 
(pharmaco-EEG) data in man have recently been pub-
lished by the International Pharmaco-EEG Society 
(IPEG)  [1] . Separate guidelines for pharmacological stud-
ies in animals are in preparation for publication by the 
IPEG.

  In the 80s and early 90s, several guidelines were pub-
lished with the goal to standardise the acquisition and 
processing of data collected in pharmaco-EEG studies  [2, 
3]  or to provide methodological recommendations for the 
recording and quantitative analysis of EEG activity in re-
search contexts  [4] . In parallel, several organisations pub-
lished recommendations and guidelines for the use of 
EEG in various clinical fields  [5–7]  in an effort to improve 
standardisation and facilitate the proper utilisation of the 
technique in clinical practice.

  For many years, the evaluation of PSG recordings has 
been conducted according to the rules presented in 1968 
by a panel led by Rechtschaffen and Kales  [8]  in their pub-
lication entitled  A Manual of Standardized Terminology, 
Techniques and Scoring System for Sleep Stages of Human 
Subjects , and this manual (known as R&K) provided the 
generally accepted method for the scoring of the adult 
human PSG tracings in clinical and research settings. 

Despite criticism expressed by several authors  [9–11] , the 
scoring criteria have been used as the ‘gold standard’ 
 until May 2007 when  The AASM Manual for the Scoring 
of Sleep and Associated Events: Rules, Terminology and 
Technical Specification  was published by the American 
Academy of Sleep Medicine (AASM)  [12] , with the goal 
to replace the scoring rules published by Rechtschaffen 
and Kales in 1968.

  However, neither the R&K nor the AASM manuals 
have focused on application to pharmaco-sleep studies. 
Hence, although these guidance documents have enabled 
a good level of standardisation in the evaluation of sleep 
recordings and many operational aspects, other inconsis-
tencies remain in the conduct of pharmaco-sleep studies, 
including methodological differences (most importantly 
the number of consecutive nights studied) and the appli-
cation of inclusion/exclusion criteria  [13] . The current 
guidelines are intended to augment the AASM manual by 
providing additional guidance relating specifically to 
pharmaco-sleep studies and their specific challenges. To 
improve consistency, investigators using pharmaco-sleep 
methodology are urged to follow and reference these 
guidelines when designing and conducting studies, and 
in particular when reporting the methods used and re-
sults obtained.

  Clinical trials must be conducted in compliance with 
good clinical practice (GCP), an international quality 
standard launched by the International Conference on 
Harmonisation (ICH), an international body defining 
standards that governments can transpose into regula-
tions for the conduct of clinical trials involving human 
subjects and more specifically in relation to research for 
the registration of pharmaceuticals. GCP requires stan-
dard operating procedures (SOPs) to be defined and ap-
plied to all methods and procedures during drug devel-
opment research, and while the scoring manuals (R&K or 
AASM) provide sound references for sleep scoring, there 
are other important aspects that must be taken into con-
sideration. The purpose of the present guidelines is to 
provide clear and concise recommendations for pharma-
co-sleep studies and thereby to standardise methodology, 
including study designs, and facilitate comparability of 
data across laboratories.

  The EEG is a non-invasive method which reflects the 
spontaneous synchronised postsynaptic neuronal activ-
ity of the human cortex with high temporal resolution. 
While EEG parameters, including sleep measures, are 
among the CNS activity biomarkers with the highest her-
itability to the extent that they even constitute an indi-
vidual fingerprint  [14–18] , they show at the same time a 
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very high sensitivity to changes in internal (state-modu-
lated traits) as well as environmental factors. The sensi-
tivity to such factors, which are extraneous to the objec-
tives of many studies, means that a high degree of quality 
control and detailed standard operating procedures are 
required in order to decrease the effect of confounders in 
the recording and analysis of the data.

  While pharmaco-sleep research has demonstrated its 
value in the development of CNS-active compounds in 
many instances, and while validated quantitative meth-
ods have been available for a long time to study the effects 
of drugs on brain functions in patients and volunteers 
 [19–21] , there is still reluctance to apply this method in 
large-scale clinical trials or for decision-making drug 
studies outside the area of sleep medications. There are a 
number of reasons contributing to this situation:
  (1) While there is evidence indicating the putative utility 

and validity of EEG and sleep as biomarkers relevant 
to a range of drug classes covering several therapeutic 
indications, they have not yet been generally accepted 
as such, particularly in the case of non-hypnotics 
where their role is less easy to define. Further, the 
translatability of pharmaco-sleep signatures from an-
imal to man is not universal across the spectrum of 
CNS-active drugs, but depends on the pharmacologi-
cal mechanism and the preclinical species used. Hence, 
its use as a translatable biomarker for the preclinical 
screening of compounds and the development of new 
drugs requires careful interpretation  [22] .

  (2) Despite the fact that the effects of drugs on sleep have 
been investigated in research laboratories for several 
decades now  [23–28] , operating procedures have not 
yet been standardised to an extent facilitating a reli-
able comparison of datasets and results across units, 
making it difficult (or even impossible) to share data-
sets between sites or to pool results from different clin-
ical trials.

  (3) This lack of standardisation constitutes a difficult ob-
stacle for the design and interpretation of clinical trials 
due to the difficulties in comparing results across the 
literature.

  (4) For a long time, the amount of data generated by re-
cording PSG signals across multiple nights in different 
treatment periods quickly overwhelmed the storage 
capacity of computers, meaning that only derived data 
was stored rather than the raw EEG recording, and the 
processing techniques were constrained by central 
processing unit power, particularly when undertaking 
spectral analysis of the EEG from multiple electrodes. 
These limitations have now disappeared as a conse-

quence of vastly increased computing power and stor-
age capacities.
  In this context, one of the crucial steps is to enhance 

the standardisation of the operating procedures, not only 
to improve the ability to compare datasets and results 
generated in different laboratories by reducing variance, 
but also to facilitate the creation of a centralised data re-
pository where large numbers of records can be stored 
and shared. Such a repository would enable the following 
endeavours:
  (1) constitute reference datasets (i.e. both the raw PSG sig-

nals and derived parameters) obtained under stan-
dardised environmental conditions from different 
studies using various drugs (with emphasis on refer-
ence drugs and including placebo) and study popula-
tions (healthy volunteers and various patient popula-
tions) under standardised behavioural conditions, en-
abling comparative analyses and development of 
novel signal-processing techniques (e.g. automated 
sleep scoring);

  (2) identify PSG parameters and properties that could be 
exploited as potential (translatable) biomarkers and 
quantify their validity in large populations;

  (3) confirm the utility and reproducibility of PSG as a sen-
sitive assay providing PD data suitable for determin-
ing pharmacokinetic/pharmacodynamic (PK/PD) re-
lationships (exposure/response curves) and dose re-
sponse in both animals and humans;

  (4) facilitate the transition of novel compounds from pre-
clinical to clinical R&D programmes by enabling the 
early comparison of results obtained in preclinical 
screening and early clinical experiments, thereby im-
proving the decision-making process as well as derisk-
ing and accelerating the development of new CNS-ac-
tive compounds.

  Pharmaco-Sleep Studies

  Fundamentals
  It is well established that control of physiological func-

tioning during wake and sleep differ. In fact, within sleep 
there are differences in functioning during rapid eye 
movement (REM) and non-REM (NREM) sleep and even 
within REM sleep there are differences between phasic 
and tonic REM. For example, hypercapnic drive is blunted 
in NREM sleep relative to wake and is further blunted in 
phasic REM sleep. Importantly, the basis of sleep disorder 
medicine is the realisation that a given physiological func-
tion can be normal while awake and be pathological when 
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the person is asleep. Sleep apnoea and REM behaviour 
disorders are examples of this. Thus, it becomes critical to 
be able to evaluate physiological functioning across the 
sleep state. The PSG recording of sleep provides the re-
searcher as well as the clinician with a unique insight into 
the nature of functioning during one third of a human’s 
existence. The basis of PSG is the simultaneous recording 
of EEG, electromyography (EMG) and electrooculogra-
phy (EOG) signals. In addition, a multitude of assays 
ranging from brain metabolism to endocrine function 
can be recorded simultaneously to answer specific ques-
tions. For example, clinicians routinely record a variety of 
cardiorespiratory parameters as well as several EMG loca-
tions to detect a variety of sleep disorders. Insomnia re-
searchers often record autonomic nervous system param-
eters. These recordings have the potential to provide in-
sights into both the efficacy as well as the mechanism of 
action of sleep-promoting drugs or drugs that interact in 
other ways with sleep (e.g. vigilance-enhancing drugs) or 
the sleep-wake cycle (e.g. chronobiotics such as mela-
toninergic substances). In some such cases, sleep mea-
sures can be used as biomarkers of pharmacological ac-
tion even when the primary drug indication cannot be 
specifically related to the sleep effects (e.g. REM sleep sup-
pression with antidepressants  [20] ). Importantly, PSG is 
not limited to defining sleep initiation simply by looking 
at sleep latency and sleep maintenance with wake time 
after sleep onset, but new parameters are being routinely 
used. For example, frequency and duration of sleep and 
wake bouts have routinely been used in animal research 
and are now being applied to the analysis of human sleep. 
Spectral analysis is another valuable tool in understand-
ing sleep EEG data, especially the amount and regulation 
of slow-wave activity. These and other types of measures, 
like transient arousals, are enabling investigators to cap-
ture more of the richness of PSG data  [29] .

  An essential part of understanding sleep quality is the 
comparison of PSG measures to those reported by sub-
jects in post-sleep questionnaires. These comparisons tell 
us how patients’  perceptions  of how they sleep relate to 
how they  actually  sleep. For example, insomnia patients 
routinely overestimate the severity of their sleep problem 
as determined by PSG recordings. The pattern of these 
discrepancies is important to appreciate in drug develop-
ment. For example, with benzodiazepine receptor ago-
nists, patients may report greater efficacy than that sug-
gested by PSG data  [30] . In contrast, with other drug 
classes, such as serotonin antagonists and melatonin ago-
nists, PSG results are more robust than patient reports 
 [31] . For this reason, as well as other considerations, some 

regulatory bodies require both types of data for the eval-
uation of sleep-promoting agents. Generally PSG data are 
critical for the evaluation of drugs. PSG is uniquely able 
to show objectively measured dose-related changes in 
hypnotic activity that are independent of subject reports, 
both in terms of efficacy parameters as well as sleep stage 
distribution.

  Currently, several new technologies are being devel-
oped and used in sleep research. Examples include actig-
raphy  [32] , which is discussed in detail in a separate sec-
tion below, and various home-based sleep-monitoring sys-
tems. Some of these, such as that described by Shambroom 
et al.  [33] , are PSG systems modified to be suitable for use 
in the home, which retain EEG as the core biosignal. When 
considering the utility of such devices in pharmaco-sleep 
studies, the most important factor is therefore control of 
the environmental conditions, which is discussed further 
below. Other home sleep testing systems, however, use a 
reduced set of recording channels without EEG. Such sys-
tems have been proposed as cost-effective, patient-friend-
ly and scientifically valid in the diagnosis of sleep-disor-
dered breathing  [34] , although some controversy remains 
 [35, 36] . Indeed, it has recently been proposed that ob-
structive sleep apnoea can be detected from the electrocar-
diography (ECG) signal alone  [37] . In general, such re-
duced-channel systems are not suitable for use in phar-
maco-sleep studies as their application is too narrowly 
focused on the respiratory aspects of sleep, and hence they 
do not enable a full examination of drug effects.

  As part of the development of new techniques, there is 
invariably a validation study against PSG. While such 
validation studies are important, they somewhat miss the 
point. There is no replacement for the control and rich-
ness of laboratory-based PSG, while the laboratory condi-
tion equally cannot replace the home situation with re-
spect to a number of the (often variable) environmental 
factors that affect a person’s sleep. The real issue is what 
types of information these alternative methodologies can 
provide that will complement PSG data. If total sleep time 
across multiple weeks is an important piece of informa-
tion, home actigraphy recordings are better suited for this 
than PSG recordings. However, if a more detailed analy-
sis is needed for selected days, PSG is the ideal technique 
for that purpose. In general PSG data are the most com-
prehensive and reliable data of sleep. These guidelines are 
intended to help investigators and clinicians to maximise 
the use of this important tool.

  Finally, all clinical trial programmes must follow the 
ICH guidelines aimed at ‘ensuring that good quality, safe 
and effective medicines are developed and registered in 
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the most efficient and cost-effective manner. These ac-
tivities are pursued in the interest of the consumer and 
public health, to prevent unnecessary duplication of clin-
ical trials in humans and to minimize the use of animal 
testing without compromising the regulatory obligations 
of safety and effectiveness’. The ICH guidelines cover a 
broad range of activities related to drug development  [38, 
39] .

  Subjects
  PSG studies have an important role in many research 

areas. The choice of subjects for a given study depends on 
the goal of that study. For example, in drug development, 
if the goal of the research is to define the pharmacological 
activity of the drug in terms of sleep stage distribution, 
degree and duration of sedative activity, or physiological 
activity during sleep, then normal healthy volunteers are 
the appropriate subject population. On the other hand, if 
the goal of the study is to determine efficacy, then the ap-
propriate patient group needs to be studied. Studying 
both groups allows us to understand drug effects more 
fully. For example, a drug may have a pharmacological 
activity to suppress slow-wave sleep. However, if the sub-
jects are patients with minimal slow-wave activity, this 
drug effect may be missed. Conversely, if a drug has the 
ability to help induce sleep but healthy subjects with nor-
mal sleep latency are studied, this effect may be missed.

  Regardless of the subject population being studied, 
there are certain exclusion criteria which need to be kept 
in mind in all PSG studies. First, most medical and psy-
chiatric disorders are associated with disturbed sleep. 
This can be evidenced by difficulty initiating and main-
taining sleep in most psychiatric disorders and fragment-
ed sleep seen in many medical disorders  [40] . In addition, 
these clinical populations often take medications and it 
must be recognised that virtually any drug that pene-
trates the CNS has the potential to alter sleep. For exam-
ple, respiratory stimulants are given for lung disease, but 
they fragment sleep. Similarly, first-generation H 1  antag-
onists are given for allergies, but they also promote sleep. 
Aside from prescription and over-the-counter medica-
tions, and herbal preparations, attention must be paid to 
the amount and timing of alcohol and caffeine consump-
tion. Consumption of large amounts of these compounds 
precludes subjects from participation in studies as dis-
continuation can lead to rebound sleep disturbance in the 
case of alcohol or rebound sleepiness in the case of caf-
feine. Thus, only moderate users should be included, for 
instance by excluding subjects if they meet any of the fol-
lowing conditions within the previous 6 months:

  • history of regular alcohol consumption exceeding 2–3 
units/day for females and 3–4 units/day for males  [41] ;

  • history of regular use of tobacco- or nicotine-contain-
ing products exceeding the equivalent of 5 cigarettes/
day;

  • history of regular consumption of caffeine exceeding 
the equivalent of 4 cups of coffee/day, a level that ap-
proximates health-related criteria  [42] .
  In addition, subjects should refrain from alcohol and 

caffeine for at least 24 h, and from tobacco or nicotine 
products for at least 4 and preferably 8 h, prior to a PSG 
recording. In healthy volunteer studies subjects using il-
licit drugs of abuse (including recreational use) should be 
excluded. Stricter exclusion criteria or restrictions (with 
respect to age, sex, body mass index, handedness, physi-
cal/mental/medical status/history including cardiac and 
laboratory parameters, visual/auditory function, ability 
to communicate, etc.) may be applied on a study-by-study 
basis where required.

  Another critical variable to consider in selecting 
healthy volunteers for a pharmaco-sleep study is the reg-
ularity, duration and timing of sleep. Healthy adult vol-
unteers should routinely spend 6.5–8.5 h in bed each 
night as less than 6.5 h can be associated with chronic 
sleep deprivation and/or restriction and more than 8.5 h 
can be indicative of a disorder. However, it may be neces-
sary to alter this criterion in the case of adolescents or the 
elderly to account for age-related differences. Aside from 
duration, subjects who maintain regular bed times should 
be selected, with a suitable inclusion criterion being vari-
ations of less than 2 h over a 2-week period. Finally, sub-
jects should sleep at traditional hours. Typically subjects 
are required to go to sleep routinely between 22.00 and 
00.00 h (midnight), although this criterion may be varied 
according to the subject population and cultural differ-
ences and it may also, in some cases, be necessary to set 
different criteria for weekdays and weekends. These re-
quirements should be controlled either by the use of sleep 
diaries and/or actigraphy over a period of at least 1 week 
during screening, prior to enrolment in the PSG study. 
Finally, night and shift workers, and individuals who 
need to fly across multiple time zones should also be ex-
cluded. Clearly, in the case of patients with sleep disor-
ders, these criteria will need to be relaxed appropriately 
for the condition.

  During the week preceding a PSG recording session, 
the subjects should be requested to keep to their usual 
circadian routine and to adhere to a regular sleep/wake 
pattern that matches the inclusion criteria set for the 
study, as discussed above. Sleep diaries should be used to 
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document compliance. Where adherence to a regular 
sleep/wake pattern is a particular concern, the use of ac-
tigraphy recordings as objective compliance verification 
should be considered.

  Phenotyping and/or genotyping of the participants is 
acquiring increasing importance for safety and PK rea-
sons; since drugs can be primarily metabolised by spe-
cific cytochrome P450 iso-enzymes, the metabolic status 
could be defined accordingly in order to avoid potential 
accumulation/fast elimination, during the washout 
phase, for example. If a drug is known to be subject to 
major genetic polymorphism, studies could be performed 
in panels of participants of known phenotype or geno-
type for the polymorphism in question.

  The choice of subjects is a critical issue in all PSG stud-
ies. Investigators need to balance studying the most stable 
homogeneous subjects, so as to minimise variability, with 
the need to make the population broad enough so that the 
results can be generalised to the general population.

  Environmental Conditions

  There are many environmental factors affecting the 
function and activity of the central nervous system and, 
as a result, also affecting neurophysiological readouts of 
the wake/sleep process. It is therefore necessary to control 
these factors to the best possible extent. If deviations from 
normal, pre-existing or predefined conditions are ob-
served, then these should be recorded as meta-data. In 
clinical trials, it is mandatory to predefine criteria by 
which data may be excluded from the analysis in the event 
of significant deviations, and to document the effect of 
applying these. In some cases altered environmental con-
ditions can be used as models of a particular disorder. For 
example, noise, sleeping whilst sitting up or simply the 
first-night effect can be used as models of transient in-
somnia.

  Recording Environment
  To lower the environmental impact on wake/sleep pro-

pensity mechanisms and minimise the variability be-
tween and within subjects, PSG measurements should be 
recorded under strictly controlled conditions in a labora-
tory setting, thereby restraining the influence of most ex-
ternal and internal confounding factors.

  The recording should occur in a separate, comfort-
able, darkened, sound-attenuated room with regulated 
temperature and humidity within the normal range for 
the geographical location (typically 18–22    °    C/65–72°F). 

Sleep-recording sessions should be started at a time that 
accommodates individual habitual sleep times (typically 
between 22.00 and 00.00 h, depending on the inclusion 
criteria) and last for 8 h from lights-out or until terminal 
awakening if sooner. The timing of drug administration 
should be fixed relative to the timing of lights-out. Dur-
ing the evening hours preceding recording, the subjects 
should refrain from excessive physical exercise or activi-
ties causing a high degree of mental stimulation such as 
vigorous video gaming. Also the timing and type of food 
for dinner must be carefully selected: While confined, the 
daily caloric intake per subject should not exceed approx-
imately 3,200 kcal and the nutritional composition should 
be approximately 50% carbohydrate, 35% fat and 15% 
protein. Consumption of caffeine has to be controlled 
during the course of the study. In the case of studies with 
repeated measurements, it is important to ensure that en-
vironmental and confounding factors are consistent from 
one session to the next.

  Ambulatory recordings in the home environment are 
technically feasible and have the advantage in disease 
studies (e.g. insomnia) that the effect of the drug can be 
evaluated in the surroundings in which the disorder is 
manifesting itself, taking into account that part of the 
disorder may be dependent on the home environment. 
However, such a setting requires specific planning and 
instructions to the subjects to control the study course 
knowing that the environmental conditions are uncon-
trolled per se. Due to the technical complexities of carry-
ing out PSG recordings at home, actigraphy may be a vi-
able alternative in some cases (see section ‘Sleep Assess-
ment Using Actigraphy’).

  Adaptation
  The first-night effect (FNE) is a well-known phenom-

enon in sleep research. The major factors responsible for 
this effect are the unfamiliar surroundings of the sleep 
laboratory and the subjects’ lack of adaptation to the dis-
comfort induced by electrodes, cables and instruments 
applied to their body  [43, 44] . Other factors influencing 
the magnitude of the FNE have been discussed and in-
clude the psychological effect of being the object of study 
 [43–46]  or personality traits, such as trait anxiety  [47–49]  
or even a placebo effect  [50] . The FNE can be quantita-
tively measured even when the subjects do not report sub-
jective sleep quality degradation  [47, 51] .

  Generally, the first night is consistently characterised 
by increased REM sleep latency and a reduction in the 
amount of time spent in REM, although increased sleep 
onset latency, shorter total sleep time and hence lower 
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overall sleep efficiency are often also observed  [43–45, 47, 
52] . In addition, the partial REM sleep deprivation in the 
first night may likely have consequences for the second 
night (REM rebound)  [53] . The FNE phenomenon has 
been replicated in many studies with healthy participants 
 [43, 53, 54] , psychiatric patients  [44, 52, 55, 56] , epileptics 
 [57] , juvenile rheumatoid arthritics  [58]  and in subjects 
with chronic fatigue syndrome  [59] , although the magni-
tude of the effects varies between groups. In children and 
adolescents with sleep-disordered breathing, FNEs were 
observed in the sleep parameters but not in the respira-
tory parameters  [60–62] . Consequently, it is important to 
be aware of this phenomenon when designing clinical 
sleep studies. The data obtained from the first night are, 
in most cases, discarded and not included in assessing a 
subject’s sleep.

  In the context of drug research, the results of statistical 
tests for significant differences between patients and con-
trols, between pre- and postdrug conditions, or between 
drug-induced and placebo-induced changes are related to 
the observed variances. The pronounced FNE on group 
variances might thus lead to erroneous results. In order 
to obtain reliable and valid measures of sleep, the record-
ing of an adaptation night is mandatory in most cases, 
independent of the subject’s sex, age and diagnosis, and 
the data of the adaptation night should be discarded. An 
exception is when the FNE itself is of interest in studying 
the effect of the drug, for example when using FNE as a 
model of transient insomnia in healthy volunteers  [63–
65] .

  In the case in which subjects are required to sleep in 
the laboratory during several non-consecutive blocks of 
nights, typically for long-term observation with follow-
up assessment or for a crossover study, the possibility of 
differences in (re-)adaptation effects between blocks 
must be taken into consideration. Current evidence sug-
gests that the re-adaptation process is highly dependent 
on the nature of the subjects as some groups are more 
adaptive than others. In a study aimed at assessing the 
FNE for consecutive blocks of night recording in healthy 
young subjects  [66] , it was found that a relatively small 
FNE, which was detectable only in the REM-sleep-related 
variables, was present only on the first night of the whole 
study (‘the very first night’) and that the effect did not 
persist during the remaining first nights of the subse-
quent periods, even when the study was interrupted for a 
period of 1 month. Conversely, other studies have shown 
a significant FNE, particularly for REM-sleep-related 
variables, on the first nights of subsequent periods in 
young healthy volunteers  [67] , healthy older subjects  [68]  

and insomniacs  [69, 70] , albeit that the magnitude of the 
effects was consistently found to be smaller in subsequent 
blocks than on ‘the very first night’. Therefore, the deci-
sion as to whether an adaptation night is required in each 
block or only at the start of the study must be made on a 
case-by-case basis. Important factors to consider include 
the design of the study and statistical analysis plan (in 
particular, a symmetrical design is generally recom-
mended in a crossover study, which necessitates the in-
clusion of an adaptation night in all periods or in none), 
the nature of the subjects, the endpoints being studied 
and the expected size of the drug effect.

  While some ambulatory studies suggest that conduct-
ing home recording eliminates or reduces the FNE  [71–
73] , others conducted with healthy participants  [45] , el-
derly individuals  [74, 75]  and patients  [47]  conclude that 
adaptation effects are still observed. Consequently, as 
home-based ambulatory PSG does not prevent a possible 
FNE, such study settings should always include an adap-
tation night.

  Data Acquisition

  Digital Recording
  Digitising is the conversion of an analogue (continu-

ous) signal into a digital (discrete) signal (i.e. a sequence 
of numbers). Modern analogue-to-digital converters 
(ADC) usually have a resolution of 16 bits, meaning that 
the analogue amplitude of each discrete point is rounded 
to the closest one of the available 65,536 (0 to 2 16  – 1) dig-
ital values. If the pre-amplifier gains are set to make these 
values cover a 2-mV range, then the nominal resolution 
is 5 bits/ � V, meaning that the maximum round-off error 
is 0.015  � V. The sampling rate (T S ) corresponds to the 
time interval between two subsequent points and deter-
mines the resolution in time. The sampling frequency 
(F S ) expresses the number of samples digitised per second 
and is the reciprocal of the sampling rate (F S  = 1/T S ). For 
instance, with F S  = 500 Hz, the resolution in time corre-
sponds to the sampling rate and is given by the reciprocal 
of F S , i.e. 2 ms.

  From a theoretical point of view, F S  must be at least 
twice the highest frequency present in the signal to be 
digitised (Nyquist-Shannon sampling theorem). Con-
versely, F S  may be set to at least twice the highest frequen-
cy interest, and then frequency components higher than 
F S /2, also called Nyquist frequency, must be removed us-
ing analogue filters before digitising to avoid aliasing ef-
fects. Errors introduced in the digitised signal by aliasing 
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cannot be detected and corrected afterwards. Because of 
imperfections in the analogue filters, F S  is in practice at 
least fourfold the analogue filter (anti-aliasing) cut-off 
frequency. Analogue filters may also cause other prob-
lems due to distortions. This can be mitigated by sam-
pling all biosignals at the highest possible frequency (e.g. 
2,500 Hz) using a low-pass filter that rejects frequencies 
over 625 Hz. Thereafter, the signals can be downsampled 
to 500 Hz after applying a digital low-pass filter at 125 Hz 
or below.

  From a practical point of view, the following applies 
to pharmaco-sleep studies: F S  must be at least 200 Hz 
(i.e. 200 samples/s). However, a F S  of 500 Hz or above is 
preferred to enable spectral analysis in the higher fre-
quency range of the EEG, and is recommended by the 
AASM. The analogue-to-digital converter must have a 
digital resolution of at least 12 bits (16 bits is recom-
mended) and have a round-off error below 0.2  � V (0.1 
 � V is recommended). Prior to sampling, an anti-alias-
ing low-pass filter (with a roll-off of at least 12 dB/oc-
tave) and a high-pass filter must be used. Ideally, any 
additional filters must only be applied post hoc. This 
enables the effect of the filtering step to be evaluated. In 
particular, the use of a notch-filter (50 or 60 Hz) should 
be avoided during recording as it can potentially dis-
guise an electrode problem, while mains noise can be 
eliminated off-line at the data-processing stage. Due to 
the profound effect that different filtering procedures 
can have on the final results, it is imperative that full 
details of the process followed are reported alongside 
the results, so that meaningful comparisons can be 
made with other studies.

  The electrode impedance (resistance) should conven-
tionally be maintained below 5 k � . The pre-amplifier in-
put impedance must be over 100 M � . Modern amplifiers 
with high internal resistances are able to record at higher 
scalp impedances, but it is still important to balance im-
pedance across electrode sites. As the rejection of cross-
talk between channels is important for coherence or oth-
er measures of relationship between electrodes, a cross-
talk rejection of at least 90 dB is required and better is 
recommended.

  To facilitate the export and import of PSG signals, sev-
eral file formats have been suggested in the past. Of those 
formats, only European data format (EDF) has been, and 
is being, used successfully in many multi-centre research 
programmes and is nowadays supported by more than 50 
hardware and software companies. Because of its sim-
plicity, many research groups apply EDF in their propri-
etary analysis software. An enhanced EDF-compatible 

revision (called EDF+) has been released in 2003  [76] . In 
addition to handling PSG signals, the structure of the file 
format copes with evoked potentials, electrocardiogra-
phy, annotations and actigraphy recordings.

  Comprehensive overviews on technical aspects related 
to the digital recording of EEG signals have been pub-
lished elsewhere and provide additional insight into spe-
cific details  [77–80] . The guidelines for recording and 
evaluation of pharmaco-EEG studies in man recently 
published by the IPEG  [1]  also provide further informa-
tion on the recording and processing of EEG signals.

  Calibration
  Recording accuracy (how far the sample varies from 

the ‘true’ signal value) is dependent upon system calibra-
tion. The calibration procedure is aimed at testing the 
performance of the entire hardware and must be carried 
out before each measurement. Calibration is also essen-
tial to achieve a reference potential of known voltage 
against the absolute amplitude of the recorded signals. To 
pick up possible time-dependent fluctuations of ampli-
fiers, due to thermic effects for example, it is strongly rec-
ommended to recheck the calibration at the end of each 
measurement session.

  Nowadays, most PSG machines have internal hard-
ware calibration, and some will carry out a calibration 
check fully automatically. Verification is made that the 
same input signals (specifically sine waves with known 
amplitude and frequency) applied to all channels are 
present with the same amplitude at the output of the am-
plifiers and are subsequently correctly transmitted to the 
analogue-to-digital converter. If internal calibration is 
not available, then an external device should be used to 
generate stable test waves that are relayed through the 
electrode sockets.

  Sleep Biosignals
  REM and NREM sleep can be distinguished, and 

NREM sleep can be further subdivided into distinct stag-
es according to the AASM guidelines  [12] , based on com-
binations of patterns in the EEG, chin EMG and EOG 
signals, which can be recorded using skin electrodes.

  EEG
  The number of electrodes used to record sleep EEG 

depends upon the nature of the scientific question under 
investigation, the electrodes being placed according to 
the international 10-20 system  [81] . As a matter of prin-
ciple, recording against one reference electrode is rec-
ommended to allow all conceivable montages (and of-
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fline remontages). Such unipolar montages offer the ad-
vantage of post hoc rereferencing if any particular 
electrode becomes problematic or if a need for examin-
ing hemispheric asymmetries arises. In particular, while 
a ‘linked-mastoids’ reference offers the advantage of re-
ducing common mode artefact in the EEG channels, 
this configuration may become problematic if the im-
pedance of one of the reference electrodes varies differ-
entially during a recording (for example if one of the 
electrodes becomes dislodged). Also, electrically linking 
the two brain regions can lead to distortion of the elec-
tric potential distribution. Thus, the ‘linked-mastoids’ 
reference should be avoided, especially when source lo-
calisation is applied later. The data must be stored in a 
format permitting conversion from the recording refer-
ence to any other reference (common average reference, 
current source derivation, other channels as reference, 
etc.).

  According to the AASM guidelines, the recommended 
EEG derivations for sleep scoring include scalp EEG der-
ivations from the frontal (F3/F4), central (C3/C4), and oc-
cipital (O1/O2) regions referenced to the contralateral 
mastoid (M1 or M2). The AASM guidelines (and item V.5 
of the corresponding Scoring Manual FAQ posted on 
www. aasmnet.org) suggest derivations F4-M1, Fz-Cz, 
Fpz-E1 or C4-M1 (or the contralateral equivalents) for the 
assessment of NREM sleep depth. It is not clear which 
one of these derivations is to be preferred and it is likely 
that the choice matters because different derivations have 
different EEG amplitudes. Only the C4-M1 derivation is 
compatible with the old manual that was widely adopted 
in 1968  [8] .

  Should investigators want to examine scalp sites be-
yond the standard 21 locations identified by the 10-20 sys-
tem (e.g. for topographic or localisation studies), then the 
international extended 10-20 electrode placement system 
(also known as the 10% system) should be utilised  [82] .

  The most important EEG components during sleep 
differ from those during wakefulness and include sleep 
spindles (11–16 Hz), K complexes, slow waves (0.5–2 Hz) 
and sawtooth waves, but alpha and theta rhythms are also 
relevant  [83] . They are described in the AASM scoring 
manual  [12] .

  EOG
  In sleep recordings, EOG is used to detect eye blinks, 

slow and rapid eye movements. The AASM scoring man-
ual  [12]  suggests recordings from each outer canthus, 
both referred to the M2 mastoid, or bipolar derivations, 
measuring horizontal and vertical components separate-

ly. The latter montage has the advantage that EOG arte-
facts can be removed from the EEG using appropriate 
computerised algorithms, which is not possible with the 
referential montage. Nevertheless, one has to keep in 
mind that eye movements are not necessarily synchro-
nised, and thus separate measurements for both eyes may 
be indicated  [84] .

  Chin EMG
  EMG activity is recorded with bipolar electrodes 

placed on the chin (mental or submental) and is required 
to detect REM sleep. As the decrement of the tonic EMG 
level during REM sleep may be very slight, the electrodes 
have to be applied carefully to shaved skin with 1 cm in-
terelectrode distance. Three electrodes should be used – 
one above and two (one as a backup) below the inferior 
edge of the mandible – positioned to the right and left, 
respectively.

  Electrocardiography (ECG)
  At least one ECG lead should be recorded to derive 

heart rate for investigating changes during sleep (which 
indicate transient tachycardia or bradycardia) and de-
tecting possible arrhythmias. However, while such a re-
cording is useful to identify possible ECG artefacts in the 
EEG, it is not suitable for detecting PQRST complex ab-
normalities, and the conclusive diagnosis of cardiac pa-
thologies (which have a high comorbidity with sleep ap-
noea) definitely requires more ECG channels.

  Other Signals
  Dependent upon the aim of the pharmaco-sleep 

study and/or the kind of disorder under investigation, 
further biosignals will be required to assess, for exam-
ple, respiration, leg movements, snoring, blood pressure, 
indirect measurement of blood gases (oxygen satura-
tion, transcutaneous CO 2 ), body temperature, body po-
sition, intercostal EMG, etc.  [12, 85] . In most pharmaco-
sleep studies a complete PSG recording, as specified in 
the AASM manual, will be required to enable a proper 
control of respiratory, motor or other disturbances, 
whether present at baseline (in the case of patients) or 
drug-induced. In some cases, continuous video record-
ing may also be useful to enable physically observable 
events to be linked to observations of fluctuations in the 
other signals.

  Minimum Requirements
  The minimum requirements for pharmaco-sleep 

studies are reported in  table 1 , and compliance is required 
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  Table 1.  Minimum set of requirements for the recording of PSG signals in clinical trials

  EEG  

 Electrodes  I

  
  I

  
  I

  I

 

 Sintered silver-silver chloride preferred; gold-plated cup electrodes may be used when frequencies below 
0.5 Hz are not to be analysed
  F4-M1, C4-M1 and O2-M1 (with backup electrodes placed at F3, C3, O1 and M2 for use if problems 
develop over the course of the recording with the right hemisphere selections)
  Alternate montage: Fz-Cz or FPz-E1, Cz-Oz and C4-M1 (with backup electrodes at FPz, C3, O1 and M2)
  For topographic and tomographic analysis, at least 21 electrodes placed according to the international
  10-20 system (optional 48 placed according to the 10% system) 

 Sampling frequency (FS)
and frequency range 

 I

  
  
  
  I 

 FS ≥500 Hz (recommended):
  – Anti-aliasing filter ≤125–150 Hz 
  – High-pass filter ≤0.03 Hz 
  – Frequency range 0.03–100 Hz
  FS <500 Hz (and ≥200 Hz): 
  – Anti-aliasing filter 70 Hz 
  – High-pass filter ≤0.03 Hz
  – Frequency range 0.03–40 Hz 

 Amplitude range  I  83,000 �V with 16-bit ADC (or 81,000 �V with 12-bit ADC)  

 Amplifier noise level  I  Below 1 �V pp  (or <0.15 �V rms  at 5 k� resistance within 0.1–20 Hz) 

 Analogue notch filter  I  To be avoided 

  EOG  

 Number of channels  I

  

  

  I

  I 

 Minimum: 2
  Location: right outer canthus and left outer canthus
  Unipolar versus common reference
  Alternate: both outer canthi referred to Fpz (bipolar)
  Noise level: <2 �V pp  

 Sampling frequency (FS) 
and frequency range 

 I

  I 

 Same F S  as for EEG
  For determination of eye position: DC 

 Amplitude range  I  82,000 �V  

 Amplifier noise level  I  Below 2 �V pp  

 Analogue notch filter  I  To be avoided 

  EMG (sub)mental  

 Number of channels  I  Minimum: 1 (with 1 as backup)
  Location: mental or submental (2 cm interelectrode distance) 

 Sampling frequency (F S ) 
and frequency range 

 I

  I 

 Same F S  as for EEG
  Frequency range: 10 Hz up to the analogue filter cut-off frequency 

 Amplitude range  I  83,000 �V with 16-bit ADC (or 8200 �V with 12-bit ADC) 

 Amplifier noise level  I  Below 0.1 �V pp  (or <0.02 �V rms  at 5 k� resistance within 10–150 Hz) 

 Analogue notch filter  I  To be avoided 

  ECG  

 Electrode site  I  One lead modified from lead II to monitor the heartbeat during sleep, with an electrode placed in the 
right subclavicle area and left torso over the lower ribcage beneath the heart 

 I  Sampling rate same as for EEG
  – Anti-aliasing filter: as for EEG
  – High-pass filter: 0.5 Hz
  – Frequency range: 0.5–20 Hz 
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to ensure quality results and comparability between cen-
tres. The use of sintered silver-silver chloride electrodes 
is essential when EEG frequencies below 0.5 Hz are to be 
analysed  [86] . Otherwise, gold-plated cup electrodes may 
be used.

  While recording the PSG biosignals with F S  = 200 Hz 
is considered acceptable, it is recommended to operate 
with at least 500 Hz using the appropriate anti-aliasing 
analogue filter. In general, higher sampling frequencies 
enable the application of more signal processing and 
analysis methods  [87] .

  Artefacts
  One of the most crucial pitfalls of measuring brain 

electrical activity by means of EEG is its vulnerability to 
technical and biological artefacts. Artefacts in the EEG 
are defined as any interference caused by extracerebral 
sources. Artefacts can be subdivided into two categories: 
physiological and non-physiological artefacts  [88] .

  Non-physiological artefacts typically relate to prob-
lems with electrodes (i.e. impedance and adherence), in-
strumental issues (i.e. ground loop, amplifier instability) 
or electrical power noise (i.e. 50 or 60 Hz mains noise). 
Each of these types of artefact will significantly distort 
the EEG signal to the point where signal accuracy is com-
promised.

  Physiologic artefacts in sleep studies are caused by 
movements (head, eyes, body), cardiac pulses, sweating, 
and electrical activity of head muscles. The ECG artefact 
resulting from the QRS complex is problematic when 
ECG spikes are present in the EEG channels because the 
frequency spectra of EEG and ECG signals overlap (pri-
marily in the range from 2 to 7 Hz). EOG artefacts are 
typically comprised of blinks, vertical and horizontal 
movements. Given the proximity to frontal EEG place-
ments, there is a greater likelihood of eye movements 
leaking into the anterior EEG channels although eye 
movements can also be observed in central channels. 
This is particularly true for REM sleep and wakefulness 
where EOG activity is abundant.

  Care should be taken to reduce these artefacts at the 
recording stage where possible and whenever quantita-
tive results are analysed, careful attention should be paid 
to the quality of data acquisition, as problems in any one 
of these categories are sufficient to invalidate the end 
product analysis  [87, 89] . In all cases, the artefact correc-
tion or reduction methods used should be clearly stated 
when reporting the results.

  Visual Scoring

  Equipment for Visual Scoring
  While traditional pen-writing analogue (paper) sys-

tems are still acceptable to view PSG datasets, digital 
(computer monitor) display is the recommended method. 
However, it is important to keep in mind that visual dis-
play on a computer screen is also a digital process, im-
ages being drawn as discrete pixels. Screen resolution 
(vertical and horizontal) may be a limiting factor for a 
precise representation of the signals  [80] .

  At the time of writing (2012), typical monitors have a 
resolution of 1,920 pixels horizontally by 1,080 pixels ver-
tically and a diagonal size of 23 inches (58.5 cm) resulting 
in 0.266 mm/pixel. To display an epoch of 30-second du-
ration implies that each second is allotted 64 pixels (17 
mm). With F S  = 256 Hz, 4 recorded digital values must be 
represented per pixel, resulting in a compression (squeez-
ing) and limiting the highest signal frequency that can be 
displayed. As a rule, the maximum frequency faithfully 
representable on a computer display is half the number of 
pixels per second. On the typical monitor described, this 
is 32 Hz (64/2). Conversely, to faithfully display a 30-sec-
ond epoch with components up to 40 Hz, the computer 
monitor would need to have a horizontal resolution of at 
least 2,400 pixels.

  With 1,080 pixels as vertical resolution and 20 chan-
nels, 54 pixels (14.4 mm) per trace are available and it is 
enough to display EEG signals ( 8 50  � V; 1.85  � V per pix-
el) with a sensitivity of 7  � V/mm. In the event where more 
channels must be displayed, then the vertical monitor 
resolution must be increased (by using a larger monitor 
with, for example, 1,200 or 1,600 pixels).

  The display of PSG signals on monitors with inade-
quate resolution can result in ‘spatial aliasing’ which is 
similar to violating the Nyquist-Shannon sampling theo-
rem when choosing the recording sampling rate. Spatial 
aliasing artefacts will occur when viewing fast frequency 
activity exceeding the maximum frequency given by the 
monitor’s horizontal resolution. When such spatial alias-
ing artefacts are suspected, the number of seconds dis-
played per page should be decreased. Throughout the du-
ration of the visual scoring, epochs must be equal in 
length, as expanded views may affect the scorer’s interpre-
tation of the data. It is not acceptable to modify the start 
or endpoints of epochs in order to create new epochs.

  In summary, 23-inch computer monitors with a reso-
lution of 1,920  !  1,080 pixels, as commonly available at 
the time of writing, are sufficient for the scoring of stan-
dard PSG signals.
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  Visual Scoring of the Sleep Macrostructure
  After Monroe  [90]  stressed in 1967 at a meeting of the 

Association for the Psychophysiological Study of Sleep 
(APSS) the lack of inter-rater reliability of the scoring of 
sleep records, a committee was formed to standardise the 
methods of assessment and evaluation of sleep record-
ings. This committee, which was spearheaded by Allan 
Recht schaffen and Anthony Kales (R&K), came up with 
 A Manual of Standardized Terminology, Techniques and 
Scoring System for Sleep Stages of Human Subjects   [8] , 
which for almost 40 years served as the gold standard.

  The R&K manual specified that the visual scoring of 
sleep records (which was originally performed using pa-
per traces) should be based on information from 3 biosig-
nals: (1) an EOG to record eye movements with one elec-
trode placed 1 cm above and one 1 cm below and both 
slightly lateral to the outer canthus and referenced to the 
same ear or mastoid electrode; (2) an EMG to assess mus-
cle tone with electrodes placed on and beneath the chin 
(mental and submental), and finally (3) an EEG to record 
brain activity with electrodes placed either at C4/A1 or 
C3/A2. Based on these 3 biosignals, 7 (sleep) stages are 
distinguished: wake, movement time, stage 1, stage 2, 
stage 3, stage 4 and REM sleep (stage REM). This stan-
dard was not changed with the transition from paper to 
digital recordings.

  R&K pointed out that the proposal was designed for 
(healthy) adult humans. They were aware that there are, 
in some cases, individual variations, which may require 
further elaboration. This became apparent particularly 
when the standard was applied to subjects with sleep dis-
turbances. They furthermore stressed that this ‘hand-
book should be viewed as a working instrument rather 
than a statute. … Experience with the manual may sug-
gest possible revisions. When these suggestions accu-
mulate appreciably, it would seem in order to have a re-
view of the manual’ [ 8 , p. 13]. With increasing knowl-
edge (e.g. of developmental changes throughout the 
lifespan, the nature and importance of other sleep-relat-
ed events and phenomena), several limitations of the 
R&K standard were indeed recognised over time and 
suggestions for modifications and amendments were 
made. Nevertheless, it took almost 40 years for a major 
revision to be published. The process of the development 
of a new manual was initiated in 2003 by the Board of 
Directors of the AASM. The manual was published in 
2007  [12] . With regard to sleep stage scorings the major 
advantage is the introduction of technical and digital 
specifications, and more precise scoring rules. EEG is 
recommended to be recorded from 3 sites: frontal (F4/

F3), central (C4/C3) and occipital (O2/O1) referenced 
against the contralateral mastoid. Furthermore, basic 
parameters to be reported for polysomnography and its 
definitions are specified. The number of stages which 
are distinguished is reduced to 5: stage W (wakefulness), 
stage N1, stage N2 and stage N3 (a combination of R&K 
stages 3 and 4) and stage R. There is an ongoing debate 
as to whether the new standard adds clinically relevant 
information  [91, 92]  or improves inter-rater reliability of 
sleep stage scoring  [93]  and, in particular, amongst Eu-
ropean sleep medicine/sleep research societies as to 
whether they should adopt this standard.

  When reporting the results of clinical trials, it should 
be clearly stated which standard was used and it should 
be kept in mind that results obtained with different stan-
dards are not directly comparable  [94] . Finally besides the 
need for standardisation, which allows comparability, 
there should always be room for additional approaches, 
e.g. recording with more electrodes, to enable novel ex-
plorative data analyses to deepen further our under-
standing of the complexities of sleep.

  Visual Scoring of the Sleep Microstructure
  The current and widely accepted standard for the vi-

sual scoring of sleep microstructure has been defined in 
the AASM manual  [12]  and discussed in detail (e.g.  [95] ). 
To maintain consistency, the present pharmaco-sleep 
guidelines fully adhere to this standard and the defini-
tions presented in  italics  are taken from the AASM man-
ual.

  Due to the complex nature of sleep microstructure 
measures, it is likely that the endpoints used will be study 
dependent in each case and hence specific recommenda-
tions for the quantitative measures to be used are not in-
cluded in this section. Typically, endpoints will be count 
variables such as the number of occurrences of a particu-
lar event in a given period of sleep or the density (number 
of events per hour), or some measure of the intensity or 
frequency of the phenomenon.

  In general, the definitions and morphology of the var-
ious events observed in the sleep microstructure are 
strongly dependent upon the recording techniques used 
(EEG locations and reference). For the remainder of this 
section, the given guidelines rely on the standard PSG 
montage (see section ‘Data Acquisition’).

   Sleep spindle = A train of distinct waves with frequency 
11–16 Hz (commonly 12–14 Hz) with a duration   6  0.5 sec-
onds, usually maximal in amplitude using central deriva-
tions . Sleep spindles are rhythmic, sinusoidal waves char-
acterised by progressively increasing, then gradually de-
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creasing (‘waxing and waning’) amplitudes. Sleep spindle 
properties (density, amplitude and frequency) are affect-
ed by age  [96, 97]  or by sleep deprivation  [98] , and their 
frequency might be influenced by sleep disorders, neuro-
logical disorders, and hypnotic drugs  [99, 100] . Sleep 
spindles seem to play a major role in memory consolida-
tion  [101]  and might be used as a biomarker for general 
cognitive and learning abilities  [102] . Sleep spindles show 
a large variability in their topographic distribution  [103] , 
but the majority of them appear in central regions  [104] , 
with a bimodal distribution of activity in the sigma range 
characterised by a slow sigma activity (around 12 Hz) pre-
dominant over the frontal areas and a fast activity (around 
14 Hz) over the midline central and parietal areas  [105–
107] . As sleep spindle incidence is more pronounced in 
centro-parietal leads, scoring should include at least 1 
central channel.

   K complex =   A well-delineated negative sharp wave im-
mediately followed by a positive component standing out 
from the background EEG, with total duration   6  0.5 sec-
onds, usually maximal in amplitude when recorded using 
frontal derivations. For an arousal to be associated with a 
K complex, it must commence no more than 1 second after 
termination of the K complex . K complexes represent a 
synchronised pattern consisting of alternating bursts of 
firing and silence within extended cortical networks dur-
ing sleep, which trigger and synchronise other sleep ac-
tivities in the thalamus  [108]  and are thought to relate to 
a sleep-protecting mechanism responsible for maintain-
ing sleep  [109] . Amplitude and frequency of occurrence 
of K complexes decrease with age  [110]  and under the in-
fluence of hypnotic drugs  [99, 100] . Both evoked and 
spontaneous K complexes show a frontal maximum  [104, 
111, 112]  and are usually bilaterally symmetrical  [113] . It 
is therefore recommended to score from frontal channels, 
wherever possible.

   Vertex sharp wave =   Sharply contoured waves with du-
ration   !  0.5 seconds maximal over the central region and 
distinguishable from the background activity . The vertex 
sharp waves are grapho-elements standing out from the 
background EEG. They become apparent during the 
sleep onset period  [114]  and mainly occur in late stage N1 
and early stage N2, but also during REM sleep. They are 
observed in wide scalp areas with the maximal amplitude 
at Cz  [115]  and may become inconspicuous and poorly 
demonstrable in elderly subjects  [116] .

   Sawtooth wave = Trains of sharply contoured or trian-
gular, often serrated, 2-6 Hz waves maximal in amplitude 
over the central head regions and often, but not always, 
preceding a burst of rapid eye movements . Like vertex 

waves, the sawtooth waves are a typical EEG pattern of 
stage R predominantly observed in the central areas  [115, 
116]  and should be assessed from central channels.

   Rapid eye movements (REM) =   Conjugate, irregular, 
sharply peaked eye movements with an initial deflection 
usually lasting   !  500 msec . REM are a key characteristic 
of stage R, which is altered in a number of sleep disorders 
 [117] . They may also be observed during wakefulness 
when subjects scan the environment, but disappear when 
drowsiness increases.

   Slow eye movements (SEM) =   Conjugate, reasonably 
regular, sinusoidal eye movements with an initial deflec-
tion usually lasting   1  500 msec . SEM are a phenomenon 
typical of the sleep onset period and are a maker of sleep-
iness, but they are also found in REM sleep  [118, 119] .

   Arousal =   An abrupt shift of EEG frequency including 
alpha, theta and/or frequencies greater than 16 Hz (but not 
spindles) that lasts at least 3 seconds, with at least 10 sec-
onds of stable sleep preceding the change. Scoring of arous-
al during REM requires a concurrent increase in submen-
tal EMG lasting at least 1 second . While the nature of 
arousals in sleep is still a matter of debate, there is evi-
dence showing that arousals play a prominent role in the 
pathophysiology of sleep disorders  [120]  and constitute a 
suitable marker for both the diagnosis of primary insom-
nia and the evaluation of treatment efficacy  [121] . In ad-
dition, there are significant changes in arousal threshold 
during the recovery sleep following sleep deprivation 
 [122, 123] .

   Cyclic alternating pattern (CAP).  The CAP is a long-
lasting periodic activity consisting of arousal-related 
phasic events (phase A) that periodically interrupt the 
tonic theta/delta activities of NREM sleep (phase B), 
characterising two different functional states in the 
arousal control mechanism  [124] . Clinically, CAP is a po-
tentially useful EEG feature in the diagnosis of posttrau-
matic and other causes of coma  [125]  and may be a rele-
vant marker in other conditions involving sleep fragmen-
tation, such as fibromyalgia  [126] . The physiological 
fluctuations of CAP activity during sleep are accompa-
nied by changes in balance between the sympathetic and 
vagal components of the autonomic system  [127] . Lastly, 
CAP measures are sensitive to pharmacological treat-
ments and constitute valuable endpoints in insomnia re-
search  [128] .

  Visual Scoring of Additional Sleep-Associated Events
  The scoring of sleep-associated events includes the 

scoring of movement events, which are defined in the 
AASM manual  [12]  and described further in a review pa-
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per  [129] . These events include twitches, brief muscle ac-
tivations, leg and limb movements, increased and de-
creased muscle tone. Specific events and combinations of 
events are related to sleepwalking and movement disor-
ders during sleep. They are distinguished as simple move-
ments and complex movements, which may show some 
coordinated activations. Sleepwalking is a complex move-
ment during sleep. Talking during sleep is an additional 
event involving some motor functions. Bruxism during 
sleep, which can be induced by various psycho-active 
medications  [130] , can be scored by video, muscle record-
ings, and sometimes even by audio events.

  The respiratory events, which are scored in cardiore-
spiratory PSG, are apnoea, hypopnoea and hypoventila-
tion events. Definitions are provided in the AASM man-
ual  [12]  but it should be noted that there is still some 
 uncertainty about the optimal definitions  [131] , which is 
reflected in the AASM manual by the inclusion of two 
different options for hypopnoeas, for example. Apnoea 
and hypopnoea events have a minimum duration of 10 s 
and are defined as a drop in respiratory amplitude by at 
least 90% and either 30 or 50%, respectively. Obstructive, 
central, and mixed apnoea events are distinguished based 
on the parallel scoring of oronasal airflow and respira-
tory effort recorded by respiratory movement sensors. 
Central apnoea is a cessation of airflow and no remaining 
respiratory effort. Obstructive apnoea is a cessation of 
airflow with remaining respiratory effort. A mixed ap-
noea shows both, initially no respiratory effort which 
then resumes during the second part of the event. As part 
of the hypopnoea definition, oxygen desaturation is eval-
uated. Two alternative definitions of a hypopnoea are 
used: (i) a drop in oxygen saturation by at least 4% and a 
reduction of nasal pressure by at least 30% for over 10 s 
and 90% of the event’s duration or (ii) a drop in oxygen 
saturation by at least 3% and a reduction of airflow by at 
least 50% over the same time period. The first definition 
is recommended by the AASM and is actually the same 
as being used by some reimbursement regulations in the 
USA (Medicare). The second definition has been used in 
many publications and is therefore included as a reference 
to literature. A hypoventilation is defined by an increase 
in CO 2  above the normal increase which can be observed 
during sleep. The pathological increase in CO 2  shows that 
the lowering of airflow during sleep is more than it should 
be. Snoring is not scored regularly because it is regarded 
as a normal variant and not as a pathological event. No 
standard definitions for the scoring of snoring have been 
developed until now. Respiratory flow limitation has of-
ten been discussed as having pathological consequences 

but the definitions of flow limitation were variable be-
tween studies. The scoring of respiratory effort-related 
arousals is now defined as an option to solve this prob-
lem. The definition of respiratory effort-related arousal is 
based on the fact that some degree of flow limitation 
tends to lead to cortical arousals, and hence combines 
arousal criteria  [132]  with the requirement for 10 s of in-
creasing respiratory effort of reduced airflow. For chil-
dren the rules for respiratory events are revised and are, 
in general, based on shorter time intervals  [133] .

  The scoring of cardiac events during sleep is limited 
due to the fact that usually only one ECG lead is recorded 
 [134] . The interpretation of a single-lead ECG is necessar-
ily reduced to heart rate changes and a coarse examination 
for detection of ectopic beats (detailed classification of ec-
topic beats requires more than one lead). Likely asystoles 
can be detected, but a multiple-lead ECG is required for 
confirmation. Therefore, in general, the scoring of cardiac 
events from a standard PSG is reduced to simple yes/no 
decisions about the likelihood of a particular abnormality, 
and multiple-lead diagnostic ECG recordings are required 
for a more detailed assessment and firm diagnosis.

  The recording of other, unforeseen, events during 
sleep is important, because this leaves the door open for 
any kinds of known and unknown phenomena. These 
could be movement-related but outside the conventional 
definitions mentioned above, gastric reflux events, noc-
turnal asthma episodes, epileptic seizures or simply 
sleep-talking. From the perspective of a sleep scorer, it is 
important that such events are marked, as detection will 
rely on linking them to the sleep log taken by the sleep 
technician during the recording. In this context, video 
and audio recording are mandatory.

  Scorer
  A crucial aspect in the evaluation of sleep recordings 

by human scorers is the inter- and intra-individual reli-
ability. This can be judged at different levels: (1) by visual 
inspection of hypnograms, (2) by comparison of (quanti-
tative) sleep parameters derived from PSG studies, and 
(3) by comparing scorings epoch by epoch. Visual inspec-
tion is merely subjective and has no statistical approach 
to quantify the degree of agreement or disagreement. For 
quantitative sleep parameters the degree of agreement 
between 2 experts can statistically be assessed by a t test 
for dependent variables (for normally distributed traits) 
or independently of the distribution by mean of Wilcox-
on’s matched pairs signed-rank test. For more than 2 ex-
perts the corresponding tests are a univariate analysis of 
variance with repeated measures or the non-parametric 
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Friedman test. Another approach is to calculate intra-
class correlations, although these carry the caveat that 
such correlations do not take into account systematic 
over- or underestimation by 1 scorer. For an epoch-by-
epoch comparison of scorings from 2 or more scorers as 
well as intra-individual variation, the degree of agree-
ment can be specified as percentages or using  � -statistics 
(Cohen’s  �  for 2 scorers and Fleiss’  �  for more than 2 scor-
ers). Since  �  takes into account the agreement occurring 
just by chance, it is a more robust measure than percent-
age agreement.

  The difference between the percentage of agreement 
and  �  for 2 scorers is illustrated in  table 2  based on a data-

set from an EU-funded research project presented in 
Danker-Hopfe et al.  [135] . The table summarises the scor-
ing results for a sample of 196 nights from 98 patients 
with different (sleep) disorders. In this example, the sim-
ple percentage agreement between the 2 scorers is 76.8% 
and the Cohen’s  � -coefficient is 0.682.

  Empirical data show that the degree of agreement de-
creases with an increasing number of scorers and/or lab-
oratories involved as well as with age of patients/subjects. 
Agreement is lower in patients than in healthy subjects, 
varies with sleep stages (best for REM/R sleep and worst 
for stage 1/N1 sleep), the number of stages distinguished 
(the lower the number of stages distinguished, the higher 

  Table 2.  Matrix of (sleep) stage scorings by two scorers according to the R&K (1968) standard, stages 3 and 4 are combined into SWS

 Scorer 2  Sum 

 Wake  Stage 1  Stage 2  SWS  Stage REM 

 Scorer 1 
 Wake   f11 = 33,045   f12 =  4,345  f13 =  1,993  f14 =  52  f15 =  302  f1. =  39,737 
 Stage 1  f21 =  4,189   f22 = 10,033   f23 =  6,379  f24 =  60  f25 =  1,296  f2. =  21,957 
 Stage 2  f31 =  2,093  f32 =  7,378   f33 = 65,114   f34 =  4,193  f35 =  1,207  f3. =  79,985 
 SWS  f41 =  68  f42 =  55  f43 =  5,042   f44 = 13,761   f45 =  2  f4. =  18,928 
 Stage REM  f51 =  547  f52 =  2,837  f53 =  1,772  f54 =  3   f55 = 22,800   f5. =  27,959 

 Sum  f.1 = 39,942  f.2 = 24,648  f.3 = 80,300  f.4 = 25,607  f.5 = 18,069  N = 188,566 
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 The percentage of agreement between the two scorers results from the sum of epochs in the diagonal of the matrix (indicated in 
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the agreement), and medical condition/sleep disorder. Fi-
nally for slow-wave sleep (stages 3 and 4 and N3, respec-
tively) agreement is lower for male than for female sub-
jects  [93, 135] .

  In the framework of the development of the AASM 
scoring standard, Silber et al.  [95]  pointed out: ‘No visual 
based scoring system will ever be perfect, as all methods 
are limited by the physiology of the human eye and vi-
sual cortex, individual differences in scoring experiences, 
and the ability to detect events viewed using a 30-second 
epoch. Nevertheless, we believe it is possible to develop a 
rigorous, biologically valid scoring system that can be ap-
plied meaningfully in clinical and research settings. The 
new scoring system is presented as a step forward along 
this path’ (p. 129). A study by Danker-Hopfe et al.  [93]  
showed that there is no substantial improvement in the 
inter-rater reliability when scoring is done according to 
the AASM standard as compared to the R&K standard. 
The physiology of the human eye and visual cortex men-
tioned as limitation above can also be an advantage in 
certain clinical trials and especially in the PSG screening 
phase. The human eye might detect small changes in the 
EEG signal, e.g. seizure-like discharges or bruxism, which 
might escape detection in an automatic analysis.

  A prerequisite for visual scoring in any case is that the 
scorer is well trained and has sufficient experience. Scor-
ers should regularly participate in internal and external 
training/retraining activities with certification. In the 
context of clinical trials, the following requirements apply:
  • In multi-centre studies, a central scoring laboratory is 

to be used due to the scoring variability generally ob-
served between scorers from different sleep laborato-
ries  [135–137] .

  • When several experts are involved in the scoring for 
one trial, the inter-rater agreement (Cohen’s  �  or Fleiss’ 
 � , as appropriate) should be reported alongside the re-
sults. In general,  �   6 0.75 should be achievable in 
pharmaco-sleep studies although it is recognised that 
in some patient populations, this level of agreement 
may not be attained. Studies where  �   ! 0.60 should be 
interpreted with caution.

  • Repeated recordings from the same subject should al-
ways be evaluated by the same expert.

  Reporting Results
   Table  3  summarises the sleep parameters extracted 

from visual scoring to quantify sleep induction and con-
tinuity and sleep architecture. This set of measures con-
stitutes the minimum requirement for reporting results 
in the context of clinical trials, although additional pa-

rameters may have to be included dependent upon the 
study objectives. In many cases it may be useful to report 
the relevant measures for each hour and each quarter of 
the night, in addition to the whole night, to highlight any 
temporal variations. In addition to the natural variations 
in sleep architecture through the different phases of the 
night, such temporal variations are particularly relevant 
for pharmaco-sleep studies, since drug concentrations 
and the effects on sleep can vary considerably over time.

  The representation of treatment effects is usually 
based on group statistics which correspond, for each re-
cording session, to the average (mean) of the individual 
parameters within treatment groups. From a theoretical 
point of view, the mean may be inappropriate for describ-
ing the central location in the case of one-sided heavy-
tailed distributions, since a single value can induce a bias 
which is considerably accentuated in case of a small sam-
ple size. Thus, if the distribution of the data is not sym-
metric, which is particularly the case for measurements 
of latencies, the mean results must be assessed with cau-
tion. On the other hand, the median might be too robust 
if the distribution is heavy tailed. An appropriate way of 
circumventing this problem is to use the trimean as a 
non-parametric measure to quantify the central location 
of the sample. This measure combines the median for ro-
bustness, with the quartiles suitable for reflecting asym-
metries in the data distribution  [138] .

  Consequently, when reporting group (i.e. treatment) 
results, the parameters listed in  table  3  should include 
mean, standard deviation, median, first and third quar-
tiles, and trimean for descriptive purposes. Further guid-
ance on the reporting of the results of statistical testing is 
given in the section ‘Reporting of the Results of Statistical 
Analyses’.

  Digital Data Processing

  Fundamentals
  Representation in the Time Domain
  In the time domain, the variations of potential after 

amplification are displayed as a function of time and sig-
nals are usually denoted by a function s(t) [or s(k T S ) (with 
k = 1..N) in its digital form]. The representation in the 
time domain is used for the visual inspection of PSG trac-
es and for the evaluation of events for which the position 
in time is relevant. Thus, time is considered as a variable 
of the observed phenomenon and the specifications in 
terms of amplitude and time resolution may differ depen-
dent upon the information content of the recorded sig-
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nals. The detection of patterns or transient activities in 
the PSG signals usually relies on processing algorithms 
operating in the time domain.

  Representation in the Frequency Domain
  The transformation of a signal s(t) into the frequency 

domain using the fast Fourier transformation (FFT) im-
plicitly assumes that s(t) can be split up as a finite sum of 
weighted sinusoidal waveforms [denoted as s(f)]. The 
number of sinusoidal waveforms is dependent upon the 
window size (i.e. the number of points of the input signal) 
subjected to FFT. The resulting graphical representation 
displays the spectral characteristics of s(t), which is then 
depicted by peaks in the frequency domain. Thus, while 
the representation of a signal in the frequency domain 
differs from its representation in the time domain, it is 
only another way to present the same information. This 
kind of display is generally used for the evaluation of 
spontaneous activity for which the position in time of 
events has no direct relevance.

  The FFT (as an orthogonal transformation) is essen-
tially a mathematical operation performed on time series 
data which does not alter the information content of the 
signal. Neither is any assumption made regarding the na-
ture of the data or any interpretation implied. Within the 
limitations of computational accuracy, the full reversibil-
ity of the transformation is implicit and given only as long 
as numbers are retained in their complex form and not 
averaged.

  The resolution in the frequency domain depends upon 
F S  and the number of sampling points (N, size of the sig-
nal window) subjected to FFT. This resolution (denoted 
here as  � F) is given by the ratio ( � F = F S /N). Accord-
ingly, the longer the signal window N, the better the reso-
lution of the frequency content.

  When considering the results of an FFT applied to a 
signal window of N = 2,048 points (a number chosen be-
cause it corresponds to 2 11  and facilitates a rounded-off 
length) with F S  = 512 Hz, then  � F = 0.25 Hz, which means 
that the frequency analysis can resolve 0.25 Hz (that is, 

  Table 3.  Sleep scoring parameters to be reported when summarising the results of pharmaco-sleep studies. Additional parameters may 
have to be added depending upon the study goal. The reader should also refer to the AASM manual, in particular section II, when de-
termining which additional parameters to report

 Nomenclature  Definition 

 Sleep induction and continuity indices 
 Total recording time (TRT), min  Lights-out to lights-on 
 Total sleep time (TST), min  Number of minutes asleep (in any sleep stage) from lights-out to the end of the recording 
 Sleep efficiency (SE), %  (TST/TRT) ! 100 
 Sleep onset latency (SOL), min  Time from lights-out to sleep onset (i.e. the first epoch of any sleep stage) 
 Latency to persistent sleep (LPS), min  Time from lights-out to the start of persistent sleep (i.e. the first consecutive 10 min of sleep) 
 Wake after sleep onset (WASO)1, min  Number of minutes of stage W between the start of persistent sleep and the end of the recording 
 Wake time during sleep (WTDS)1, min  Number of minutes of stage W between the start of persistent sleep and terminal awakening 
 Wake time after sleep (WTAS)1, min  Number of minutes of stage W between terminal awakening and the end of the recording  
 Stage N3 latency, min  Time from sleep onset to first epoch of stage N3 
 Stage R latency, min  Time from sleep onset to first epoch of stage R 
 Number of arousals  Number of arousals after sleep onset. Typically denoted NASO 
 Number of awakenings  Defined as wake periods of at least 1 or 2 epochs after sleep onset

  Typically denoted NAASO1 and NAASO2, respectively 

 Sleep architecture indices 
 Time in stage N1, min  Number of minutes in stage N1 
 Stage N1, %  Percentage of total sleep time spent in stage N1 
 Time in stage N2, min  Number of minutes in stage N2 
 Stage N2, %  Percentage of total sleep time spent in stage N2 
 Time in stage N3 (delta sleep), min  Number of minutes in stage N3 
 Stage N3 (delta sleep), %  Percentage of total sleep time spent in stage N3 
 Time in stage R (REM sleep), min  Number of minutes in stage R 
 Stage R (REM sleep), %  Percentage of total sleep time spent in stage R 

 1 Note that WASO = WTDS + WTAS. 
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resolve 10.25 vs. 10.50 Hz directly). In this particular 
case, the signal window (called as epoch) will have a 
length of 4 s.

  To reduce the broadband artefact, known as leakage, 
the signal window must be tapered toward zero at their 
initial and final data points (this tapering is usually done 
using a windowing function). When the FFT is applied 
on sequential epochs, then discarding a proportion of the 
signal through windowing can lead to differences in 
spectra depending on the starting point of the epoch se-
ries. An alternative that results in a spectrum less sensi-
tive to the starting point is to use partially overlapping 
epochs so that all data is represented.

  Spectral analysis via FFT was one of the first comput-
erised techniques used for the parameterisation of the 
EEG during sleep  [139, 140] . It continues to be the most 
common method of choice for the processing of EEG sig-
nals and the assessment of frequency versus energy vari-
ation as a function of time (i.e. overnight).

  Non-Stationarity
  Many signals, including EEG, are non-stationary, 

which means that they have a time-varying frequency 
spectrum, although they can be considered locally sta-
tionary over short segments in which the parameters of 
interest vary minimally.

  In practice, the choice of the segment length is a trade-
off between frequency resolution (which suggests a longer 
epoch) and ensuring quasi-stationarity (which suggests a 

shorter epoch). For the pharmaco-sleep EEG, epochs of 
2–10 s duration are used.

  Spectral Analysis of the Sleep EEG
  The traditional parameterisation of pharmaco-sleep 

EEG activity is largely based on spectral analysis. To this 
end, the recorded signals are divided into epochs (2–10 s) 
which are subjected to spectral analysis using FFT. This 
transformation in the frequency domain and subsequent 
computation of the power spectrum allows a first data 
reduction.

  The second step of data reduction consists of the ex-
traction of spectral parameters. The frequency range is 
subdivided into frequency bands and the spectral perfor-
mance (area under the curve) is computed for each of 
them and expressed in microvolts (square root of absolute 
power) or using another transformation (e.g. the natural 
logarithm) to better meet the assumption of normal dis-
tribution  [141–143] . The transformation should prefera-
bly be carried out prior to any other manipulations, such 
as averaging spectral parameters across several epochs.

  Substantial variability exists in the literature regard-
ing frequency bands  [83] . For quantitative pharmaco-
EEG studies, the IPEG has recently published a definition 
of frequency ranges to be used in the context of drug test-
ing  [1] . These frequency bands have been defined on the 
basis of factorial analysis of EEG records.  Table 4  provides 
a summary of the frequency ranges to be used in phar-
maco-sleep studies. It does not mean that other frequen-
cy ranges shall not be used for specific purposes. How-
ever, to ensure that the results of a study can be compared 
with other published studies and that the results can thus 
provide useful reference material for other scientists, 
publications should always report the results obtained for 
this standard frequency band configuration (beside oth-
ers if appropriate).

  Absolute spectral EEG values are recommended as the 
primary outcome measures (endpoints) in the pharmaco-
EEG and pharmaco-sleep profiling. Test-retest reliability 
investigations have shown that intra-individual EEG 
spectral measures can be treated as a stable trait  [145] . 
Additional computed spectral parameters, such as rela-
tive values in frequency ranges, average and dominant 
frequency within a frequency band, peak skewness 
(asymmetry coefficient), peak kurtosis (peak shape), ac-
tivity ratio between different frequency bands and log-
transformed values [log(x/[1 – x]) where x = relative pow-
er in a frequency band] should be interpreted in the light 
of absolute values. These derived parameters may provide 
additional insights for the interpretation of the data.

  Table 4.  Frequency ranges for EEG spectral analysis in pharmaco-
sleep studies

 Nomenclature  Frequency range, Hz  Unit of result 

 Delta 0.5 to <4.0  �V/Hz 
 Theta 4.0 to <8.0  �V/Hz 
 Alpha 8.0 to <12.0  �V/Hz 
 Beta1 (sigma)  12.0 to <16.0  �V/Hz 
 Beta2  16.0 to <20.0  �V/Hz 
 Beta3  20.0 to <30.0  �V/Hz 
 Gamma  30.0 to <40.0  �V/Hz 
 Total 0.5 to <40.0  �V/Hz 
 Dominant frequency 4.0 to <12.0  Hz 
 ASI        alpha        – 

 delta + theta 

 The alpha slow-wave index (ASI) is defined as the ratio be-
tween alpha activity and the sum of the activity in the delta and 
the theta frequency ranges [144]. 
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  When carrying out spectral analysis, decisions must 
be taken, according to the objectives of the study, over 
which time periods to average the data. In most cases the 
spectral properties of NREM and REM sleep should be 
analysed and reported separately. In many cases, in order 
to highlight any temporal variations, it may also be useful 
to report the relevant measures for each discrete period 
of NREM or REM sleep, or to divide the recording into 
hours and quarters of the night, as suggested above for 
PSG measures.

  Digital Artefact Processing
  Artefact identification and elimination is crucial for 

the proper quantitative analysis of EEG records. Artefacts 
can have various physiological origins (see section ‘Arte-
facts’) and can be identified and/or eliminated, either on-
line during the recording or offline.

  Rejection procedures omit segments with artefacts 
from analysis and are typically used in conjunction with 
experimental control, while correction procedures at-
tempt to remove the effect of artefacts from the EEG sig-
nal. A number of algorithms have been developed for the 
automated rejection and correction of EOG artefacts 
 [146–149] , ECG artefacts  [150–153]  and EMG artefacts 
 [154–157]  present in the EEG. The techniques rely on a 
palette of numerical methods, such as autoregressive 
models, independent component analysis, regression 
analysis, general linear models, wavelet transformation 
and adaptive filtering. However, when computerised al-
gorithms are used, a semi-automatic procedure that in-
cludes additional visual inspection is recommended, and 
while the approaches used for automated removal of in-
terference caused by artefacts demonstrate good perfor-
mance, they must be applied with caution.

  Should the investigator doubt the validity of the pro-
cedure either because of the large percentage of EEG seg-
ments containing artefacts or because the kind of arte-
facts could be confused with the treatment effect, for ex-
ample due to similar spectral content, then a comparative 
biometrical evaluation and assessment of the artefact-
free and the complete data should follow  [89] .

  Digital Scoring of the Sleep Macrostructure
  Attempts to develop computer-assisted identification 

of sleep stages  [158, 159]  are as old as the rules of 
Rechtschaffen and Kales  [8] . The main drivers for the 
development of an automated scoring were twofold: 
first, visual scoring is a very time-consuming, and hence 
costly, practice and automation would save the time 
spent by experienced sleep scorers and reduce the over-

all cost of the study; second, the assumption is made that 
automation would improve rating reliability and quali-
ty, thereby enhancing the understanding of the sleep 
process.

  Over the years, many attempts of computerised sleep 
staging have been undertaken  [160] . Various techniques 
have been applied, such as periodic and discriminant 
analyses  [161] , power spectral analysis  [162, 163] , deter-
ministic and stochastic methods  [164, 165] , neural net-
works  [166, 167] , segmentation and clustering  [168, 169] , 
hidden Markov models based on data from a single EEG 
channel  [170, 171] , non-linear techniques combined with 
a gaussian mixture model classifier  [172] , and multi-di-
mensional analysis based on linear and non-linear pa-
rameters  [173] . Several commercial systems have been de-
veloped  [174–178] ; however, it is generally admitted that 
routine use requires manual supervision and interven-
tion (semi-automated scoring). Nevertheless, the scoring 
time can be reduced by a factor of at least five  [179] .

  In most cases, the algorithms listed above have been 
constructed with the goal to replace (mimic) visual scor-
ing and the performance has been tested by quantifying 
the match with the outcome from visual scoring with the 
R&K and, more recently, the AASM rules. Although the 
automated methods have demonstrated satisfactory con-
cordance, the achievable agreement rates depend sub-
stantially on the patients’ age and diagnosis. In addition, 
since all these methods have been validated with different 
recordings, a direct comparison of the results of the vari-
ous approaches and their respective performance is not 
possible. Two factors with equal importance have to be 
taken into consideration  [180] :
  (1) the problems that have hindered a straightforward 

and generally accepted automated solution are mainly 
related to peculiarities of the scoring rules, artefact 
recognition, and individual differences in electro-
physiological sleep signs;

  (2) comparisons of the performance of visual and com-
puterised sleep stage scoring have historically been a 
one-way street, since the results of visual scoring have 
been taken as the reference against which the auto-
mated scoring results should be compared.
  When considering the inter- and intra-rater reliability 

generally observed when assessing visual scoring  [93] , 
whether with the R&K or the AASM rules, it is indeed 
questionable whether measuring the performance of a 
computerised system compared to such a reference is a 
valid approach. By default, the achievable outcome can-
not be better than what is achieved based on a group of 
raters. Actually, the strength of a computerised solution 
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resides in the fact that intrarating reliability equals 1, and 
it is probable that the interrating reliability between sys-
tems based on an assessment of the same set of recordings 
would provide results similar to what is observed by vi-
sual scoring.

  Nevertheless, for the time being, visual scoring re-
mains the standard in the context of clinical trials, and 
unsupervised automatic analysis is not recommended. 
However, to reduce the influence of interindividual dif-
ferences in visual sleep scoring, a semi-automated meth-
od with minimal visual editing should be applied in 
pharmaco-sleep studies in addition to the usual safe-
guards such as double-blind readers etc. Such an ap-
proach has shown its validity  [181–183] , even if caution 
and further validation are required  [184, 185] .

  Digital Scoring of the Sleep Microstructure
  As seen in the previous section, the use of a semi-au-

tomated method for analysing the sleep macrostructure 
(i.e. ‘sleep staging’) has been validated in the context of 
drug research and can therefore be used. However, sleep 
is a continuous process over time with transitions be-
tween different states characterised by specific varying 
activities, and staging is most certainly resulting in sig-
nificant amounts of information being ignored. In addi-
tion, the following aspects have to be considered:
  (1) During the process of visual evaluation of PSG curves, 

the decisions of the human scorer are implicitly influ-
enced by the results of neighbouring epochs. In ex-
treme cases, there is an ongoing change of the scoring 
criteria. Such a fuzzy procedure could be simulated by 
computers, provided the rules have been clearly de-
fined so that they can be translated according to sig-
nal-processing principles.

  (2) The assessment of the structural complexity of sleep 
stages using taxonomic statistics reveals that visually 
scored sleep stages are not homogeneous units, but 
rather agglomerations of various significant configu-
rations (types) from physiological variables that repre-
sent different aspects of the momentary EEG and 
EMG activity  [186] . Similar observations are made 
when investigating sleep stage 2  [187] . Thus, signifi-
cant variations exist within the same stage and are in-
dicated by changes in different sources and biosignals.

  (3) While early scoring was restricted to a very limited 
number of recording channels, the recording of a va-
riety of additional channels (respiratory, cardiac, ad-
ditional EEG and EMG traces, and others) has become 
standard practice and, therefore, has been defined 
with recording techniques and standard parameter 

extraction in the new AASM scoring manual. The ad-
ditional signal analysis according to arousal rules, car-
diac rules, movement rules, and respiratory rules im-
poses a heavy load on the human visual analyser  [180] .
  Digital processing allows the characterisation and 

quantification of one or several parameters of a signal 
and the display of its fluctuations over time with a high 
temporary resolution (e.g. with 1-second cycle). A simple 
example is the representation over the night of the con-
tinuous variations of slow waves (i.e. square root of the 
absolute power in the delta range) and sleep spindle activ-
ity (sigma), both showing plots highly correlated with the 
sleep stages of the hypnogram (e.g. fig. 1 in Kemp  [87] ). 
Similarly, the alpha slow-wave index can be used to detect 
episodes of wakefulness in sleep in both young healthy 
subjects and elderly insomniacs with accuracy  [188] . 
Composite parameters based on EEG and EMG activities 
display synchronisation and desynchronisation as de-
scriptors of the time course of sleep  [189] . Principal com-
ponent analysis applied to spectral parameters offers in-
formation on the time course dynamic of the sleep cycles 
 [190]  and allows the quantification of drug effects on 
sleep onset latency  [191] . The combination of autoregres-
sive modelling with the pattern recognition capabilities 
of an artificial neural network can be used to track the 
sleep dynamic and to pinpoint both micro-arousals and 
periods of severely disturbed sleep  [192] . The assessment 
of the temporal evolution of coherence and spectral pow-
er activity overnight in the low delta, alpha and sigma 
frequency ranges displays the switch between NREM and 
REM sleep  [193] . Period amplitude analysis has been ap-
plied and compared with power spectral analysis for all-
night recordings  [194] . The investigation of the correla-
tion between spectral EEG activity and heart rate vari-
ability during sleep shows that sympathetic nervous 
system activity continuously fluctuates in accordance 
with sleep deepening and lightening  [195] . Finally, by 
comparing the predicted rhythm to the actual EEG at 
each sample with the rhythm of the previous one in spe-
cific frequency ranges, it is possible to construct micro-
continuity parameters with physiological implications 
sensitive to sleep and less sensitive to artefacts  [196] . 
When concurrently applied to the signals recorded from 
several electrode locations (topographic analysis), vari-
ous kinds of correlation or propagation of brain activity 
between locations can be observed  [87] .

  The strength of the approaches presented above relies 
on the continuous representation of activities over the 
night. Applied simultaneously to multiple channels, they 
provide the possibility to assess correlations and to de-
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scribe various states of the underlying phenomenon (i.e. 
sleep) without having to build another sleep staging sys-
tem in full.

  Another approach to the assessment of the micro-
structure of sleep involves the detection of short-lived 
patterns or changes in the EEG signal and the localisation 
of specific events in the time domain. Different tech-
niques have been applied to detect various patterns, such 
as sleep spindles  [197–199] , alpha waves  [200] , K com-
plexes  [100, 201, 202] , arousals  [203, 204] , CAPs  [205] , 
transient EEG events  [206] , or eye movements  [207–209] . 
Time-frequency signal parameterisation methods, such 
as wavelets and matching pursuit, provide an elegant way 
to assess EEG recordings and to localise sleep patterns 
(e.g. sleep spindles, K-complexes, arousals) in the time-
frequency plane with high precision  [210–213] .

  All these methods provide useful information about 
micro-events. However, the main drawback is that they 
have been developed and tested using various different 
samples. Therefore, a direct comparison of their perfor-
mance is not possible, even if each method taken sepa-
rately seems to provide good results. Only if they were 
available on the same platform enabling a meaningful as-
sessment against each other using the same large sample 
of recordings, could their real value be determined.

  In the context of drug testing in clinical trials, the 
computerised assessment of sleep microstructure is still 
in its infancy and cannot be considered appropriate for 
use as a primary endpoint, although exploratory evalu-
ation may be valuable. However, it is clear that, through 
combining techniques and including a large number of 
biosignals and physiological parameters, it ultimately 
has the potential to provide the tools necessary for a 
thorough investigation of the effects of compounds on 
sleep.

  Digital Analysis of Additional Biosignals
  Sleep recording today is based on cardiorespiratory 

PSG. This typically includes additional biosignals besides 
the standard EEG, EOG and EMG recordings. Firstly, 
EMG of the muscles of the extremities is recorded in ad-
dition to the standard EMG of the chin and submental 
muscles, in order to analyse movements. Many well-val-
idated algorithms are available for computerised process-
ing of such limb movements  [214] . The biggest challenge 
here is the removal of artefacts, which is followed by an 
envelope calculation (signal rectification with previous 
subtraction of the mean value). Based on this analysis, 
short EMG spikes (twitches), limb movements (arousal 
associated) as well as changes in muscular tone (associ-

ated with changes of sleep stages) can be detected. Crite-
ria have been set to classify clinically relevant limb move-
ments  [214, 215] . It is more difficult and generally unsuc-
cessful to use muscle tone for discriminating sleep stages, 
largely because a reduction in EMG signal quality, arising 
from a decrease in impedance or an increase in noise, 
tends to give rise to an apparent increase in muscle tone. 
Movements such as bruxism- and parasomnia-related 
movements have not been successfully detected using 
computerised analysis and require manual interpreta-
tion.

  The computerised analysis of ECG is straightforward, 
and several different algorithms have been developed to 
derive heart rate from ECG recordings during sleep  [216] . 
In addition other features can be readily derived, such as 
R, T or S wave amplitude, and width of the QRS complex. 
More sophisticated ECG-derived parameters, such as the 
cardiac vector angle or ST segment values, cannot be de-
termined reliably with the single ECG lead typically used 
in a sleep study. In addition, the sampling rate chosen for 
the ECG may be a limiting factor. The AASM minimal 
specification of F S  = 200 Hz is sufficient for the calcula-
tion of heart rate and the other amplitude values men-
tioned above. However, F S   6  500 Hz is required to pro-
vide a full quantitative ECG analysis. Nevertheless, the 
ECG parameters derived even from a recording with a 
lower F S  are still good enough to investigate heart rate 
variability changes with sleep stages, with arousals and 
sleep disorders. Many algorithms have been developed to 
recognise sleep-disordered breathing from the sleep ECG 
 [216, 217] . Heart rate variability analysis is recognised as 
a useful tool to calculate sympathetic and parasympa-
thetic activity in an indirect way  [218] . Respiration can be 
derived from cyclic changes in heart rate and from am-
plitude changes of R  [219] , T and S waves.

  Continuous recordings of blood pressure and the pulse 
wave are also sometimes analysed in sleep recordings 
 [220, 221] . For blood pressure, the systolic, diastolic and 
mean values need to be calculated per beat in order to 
detect rapid changes. Rapid changes are found with 
arousals and with pathologies  [217] . Moderate variations 
are found with changing sleep stages. For pulse waves, 
there are several new methods under development. Some 
derive pulse transit time from a combination of the ECG 
and pulse wave measures. This is used as a blood pressure 
surrogate  [222] . Others derive pulse wave velocity just 
from the pulse wave contour, again in order to capture a 
blood pressure surrogate. Amplitude analysis and wave-
let analysis are the preferred tools for pulse wave analysis 
 [223] .
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  Statistical Concerns

  There are two categories of sleep-related measure-
ments: (i) summary variables derived from the epoch-by-
epoch sleep stage scoring (e.g. total sleep time) and (ii) 
variables derived directly from the raw biosignals (e.g. 
average power spectral density in a given EEG frequency 
band). This section focuses specifically on the statistical 
analysis of these pharmaco-sleep variables. Please refer to 
Ferber et al.  [224]  and Jobert et al.  [1]  for statistical topics 
related to general pharmaco-EEG. For general informa-
tion on the statistical aspects of clinical trial design and 
clinical data analysis, please refer to the International 
Conference on Harmonisation tripartite guideline  [225]  
and the Committee for Proprietary Medicinal Products 
Working Party  [226] .

  Study Design
  PSG measurements generally have a large inter-subject 

variability but a relatively smaller intra-subject variabil-
ity. A crossover clinical trial design is thus preferred in 
the early phases of drug development studies where regu-
latory acceptance is not a priority, in order to achieve 
higher statistical power with a smaller sample size  [227] . 
In contrast, a parallel group design is preferred in later 
stage confirmatory trials to avoid regulatory concerns 
over the potential carryover issues associated with cross-
over designs  [227] . In this case, the larger inter-subject 
variability of PSG measurements must be compensated 
by increasing the sample size of the study.

  The appropriate sample size for a pharmacological 
sleep study should be estimated based on the expected 
change and variability in the primary endpoints using 
standard methods  [228] . Even when PSG measurements 
are not specified as the primary endpoints, calculating 
the statistical power for the chosen sample size is still rec-
ommended, in order to provide a better understanding of 
how reliably changes in the PSG endpoints will be de-
tected.

  Statistical Modelling, Hypothesis Testing, and 
Inference
  Although Student’s t test, or its non-parametric coun-

terparts (e.g. the Wilcoxon-Mann-Whitney test  [229] ), is 
widely used for its simplicity, it is only recommended for 
hypothesis testing for a single endpoint in a study direct-
ly comparing two conditions, e.g. before versus after 
treatment, or drug versus placebo, without additional 
 covariates. Non-parametric methods are recommended 
when the endpoint, or its transformation, is not normally 

distributed. A paired difference test (i.e. the paired t test, 
or the Wilcoxon signed-rank test) should be used in a 
study when all treatment situations are applied to each 
subject. Beyond this simple scenario, inference based on 
a statistical model is recommended to improve the statis-
tical power by incorporating covariates and other rele-
vant factors.

  When baseline data is collected in a study, it is recom-
mended to incorporate the baseline in the statistical 
model using the constrained longitudinal data analysis 
method  [230, 231]  under the assumption that the subjects 
are properly randomised to the different treatment groups 
in a parallel design, or to different treatment sequences in 
a crossover design.

  In many cases sex and age significantly affect PSG pa-
rameters. When modelling measurements from either a 
parallel study or an unbalanced crossover study, sex and 
age should be incorporated as covariates. Since the rela-
tionship between the PSG measurements and age is gen-
erally non-linear, the age should be treated as a categori-
cal covariate after it has been stratified into several age 
ranges.

  In a crossover study, it is recommended to first check 
whether a carryover effect exists  [227] . If the carryover 
effect is negligible, a mixed effect model  [232]  should be 
used. The random effect in the mixed model is typically 
the subject effects. When a large clinical study involves 
many clinical sites, the random effect is composed of the 
subject effects nested within the site effects (which may 
be reduced by using a centralised and blinded expert 
scoring site). Besides the treatment and other obvious fac-
tors, the fixed effects of the mixed model can include the 
period factor and ignore the treatment sequence factor, if 
the primary interest is the treatment effect. Please refer to 
Kenward and Jones  [227]  for general statistical issues re-
garding analysis of crossover studies.

  When pharmaco-sleep EEG is used to study a drug’s 
PD properties, such as dose response and time course, it 
is typical that the PSG measurements of interest, denoted 
as variable Y, are a group of endpoints related by a param-
eter, denoted as variable X. That is, the Ys can be consid-
ered as a function of X [Y = f(X)]. It is recommended to 
include the variable X in the model as a categorical co-
variate. If the variable X has too many levels, the func-
tional data analysis approach  [233]  suggests that a small-
er number of properly chosen basis functions can replace 
the categorical variable X in the model  [234] . This reduc-
es the number of model coefficients to be estimated. As 
for specifying the covariance matrix structure in the 
model, if the study size is large, an unstructured covari-
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ance matrix over the variable X is preferred; if the study 
size is not large, a correlation matrix with an AR(1) or a 
compound symmetry structure is preferred  [232] . Mar-
kov chain models can be used to describe sleep stage tran-
sition as a function of time after drug intake and time 
after last sleep stage change. The probability to change 
sleep stage can be employed for PK/PD modelling  [235] .

  The estimate of the treatment effect on a PSG mea-
surement, along with its standard error (SE), can be cal-
culated from the fitted model using a properly construct-
ed contrast matrix and the variance-covariance matrix of 
the model coefficients.

  Due to the relatively large data size of clinical EEG-
sleep studies in drug development and especially in phase 
III, Student’s t distribution of the effect estimate is fre-
quently approximated as a normal distribution to remove 
the need to estimate the degrees of freedom under various 
complex situations. The effect estimate and its SE thus 
become sufficient to conduct hypothesis testing and to 
calculate the associated p-value and confidence interval 
(CI).

  Multiplicity adjustment becomes necessary when hy-
pothesis testing on a group of related endpoints is con-
ducted simultaneously. If the estimates of this group of 
endpoints are obtained from the same model, the correla-
tion matrix of these estimates can be derived from the 
model. Under this condition, it is recommended to use 
the multiplicity adjustment method proposed by Hothorn 
et al.  [236] . This method allows the calculation of both 
the adjusted p-values and the global simultaneous CIs of 
the estimates. Conversely, when the estimates are ob-
tained from different models, their correlation matrix is 
not readily available. It is then recommended to use 
 Hochberg’s  [237]  step-up procedure to control the family-
wise error rate.

  Reporting of the Results of Statistical Analyses
  Tables are recommended to present the detailed statis-

tics of the pharmaco-sleep endpoints for each treatment 
situation. The table should typically include at least 8 
fields: (1) number of data points; (2) arithmetic mean; (3) 
standard deviation or SE; (4) geometric mean and (5) its 
CI; (6) treatment effect estimate and (7) its p-value, and 
(8) CI. Typically, 95% CIs are used, but this can be varied 
depending on the objectives of the study.

  Graphics are preferable to present statistics for a group 
of related endpoints, since their treatment effect esti-
mates, region of significances (determined by the p-val-
ues), and the CIs can be simultaneously presented in one 
plot, thereby facilitating the visualisation of drug effects.

  Normative and Reference Databases
  For the development of new compounds, it would be 

particularly helpful to have access to an accurate norma-
tive repository of data collected using standardised meth-
ods, providing benchmarks from a large and representa-
tive population of individuals (healthy volunteers and 
various patient populations, e.g. with sleep, psychiatric or 
somatic disorders) and using various drugs (with empha-
sis on reference drugs and including placebo). However, 
whilst some individual pharmaceutical companies and 
contract research organisations may have some data avail -
 able, no such comprehensive repository is publicly avail-
able at the moment. For early drug development it would 
be important also to include reference datasets for vari-
ous non-human species, enabling the study of translation 
and discovery of translatable biomarkers (or surrogate 
markers) for the early selection of potentially interesting 
and viable compounds and for guiding the design of ear-
ly clinical studies.

  The results of a large meta-analysis of quantitative 
sleep parameters published in 2004  [238]  demonstrated 
age-related changes in objectively recorded sleep patterns 
across the human lifespan (children, adolescents, adults, 
elderly and old elderly subjects). However, the authors ob-
served that the effect sizes for the different sleep param-
eters were affected by the quality of subject screening. An-
other study published in 2005 assessed datasets from 198 
healthy non-sleep-disturbed subjects in the age range of 
20–95 years and provided normative data for a large set of 
selected sleep parameters  [239] . More recently, a collabo-
ration of 16 sleep laboratories in Germany compiled nor-
mative data from 209 children and adolescents aged 1–18 
years, thus providing a clear picture of the development of 
sleep in normal children  [240, 241] . While all three studies 
offer helpful reference datasets that can be used in the 
context of the design of clinical trials, the lack of stan-
dardised screening, differences in study designs (in par-
ticular, whether a habituation night was included) and the 
limited sample size of most studies that were included re-
strict the application and interpretation of these data.

  Several databases hosting sleep EEG recordings are 
available for download and include datasets recorded in 
healthy subjects and patients with sleep disorders, as 
summarised in  table 5 . Such repositories are particularly 
useful in providing data to evaluate signal-processing al-
gorithms. More importantly, performance comparisons 
between various techniques would be highly facilitated 
and the value of the results significantly improved, if al-
gorithms were to be tested against the same reference da-
tasets.
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  Pharmaco-Sleep Study-Related Topics

  Measurement of Sleep Tendency
  An important aspect of pharmaco-EEG studies is the 

evaluation of the degree of daytime sleepiness. The gold 
standard for the measurement of sleepiness is the multi-
ple sleep latency test (MSLT)  [245, 246] . The MSLT is 
based on the assumption that the greater the degree of 
sleepiness, the greater the rapidity of sleep onset. Thus, 
the MSLT is a standardised methodology to assess rapid-
ity of sleep onset or sleep propensity.

  The standard MSLT consists of 4 or 5 nap tests. In each 
nap test the subject is put to bed in a sleeping room, sim-
ilar to that described for nocturnal PSG, the lights are put 
out and the subject is instructed to try to fall asleep. The 

montage used for the MSLT is essentially the same as for 
the basic nocturnal PSG. For MSLT in research, the sub-
ject is deemed to have fallen asleep, and the test is termi-
nated, after 3 epochs of stage 1 sleep, or 1 epoch of an-
other stage of sleep. Three epochs of stage 1 are required 
to ensure that the subject has truly achieved sleep. For 
clinical MSLTs the nap is allowed to continue for 20 min 
to establish the onset of REM sleep, which is used as a di-
agnostic for narcolepsy. One of the criteria for narcolepsy 
is 2 or more REM naps out of 5, although this can also 
occur very occasionally with other types of hypersomnia. 
The scoring of the MSLT consists of determining the la-
tency to sleep onset (i.e. first 16 continuous seconds of any 
stage of sleep) for each nap. The mean sleep latency across 
the 4 or 5 naps is the primary endpoint. Multiple naps are 

  Table 5.  Examples of published and available databases with open access to PSG recordings from healthy subjects and patients with 
sleep disorders

Name, web source and reference Population Database description

The Sleep-EDF Database – sleep recordings and
hypnograms in European data format (EDF)

http://www.physionet.org/physiobank/database/
sleep-edf/

Kemp et al. [196]

Healthy subjects:
8 males and females
Age 21–35 years

Publicly available sleep data in EDF
EEG (FPz-Cz, Pz-Oz), EOG (horizontal), EMG (submental)
Respiratory signals: oronasal
Additional signals: body temperature
Signal sample rates: 100 and 1 Hz
R&K hypnograms of all recordings
Additional subject information: no

The Sleep Heart Health Study Polysomnography 
Database

http://www.physionet.org/pn3/shhpsgdb/

Quan et al. [242]
Lind et al. [243]

Patients:
Approx. 6,400
Age >40 years
No previous sleep apnoea,
tracheotomy or current
home oxygen therapy

Portable home sleep recordings
EEG (C4-A1, C3-A2), EOG (left, right), EMG (submental), ECG
Respiratory signals: flow, thorax, abdomen SaO2
Additional signals: body position, ambient light
Signal sample rates; 125, 50, 10 and 1 Hz
Signal available in EDF format
Additional subject information: yes

St. Vincent’s University Hospital/
University College Dublin Sleep Apnea Database

http://www.physionet.org/pn3/ucddb/

Heneghan et al. [244]

Patients:
21 males and 4 females
mean age: 50 8 10 years,
range 28–68 with probable
sleep-disordered breathing

One-night PSG recordings
EEG (C4-A1, C3-A2), EOG (left, right),
EMG (submental and tibials anterior), ECG
Respiratory signals: flow, thorax, abdomen SaO2, pulse
Additional signals: body position
Signal sample rates: 256, 128, 64, 8 Hz
R&K hypnograms of all recordings and reports of respiratory events
Additional subject information: no

SIESTA Database

http://www.ofai.at/siesta/database.html
(access request to www.thesiestagroup.com
free for non-commercial purposes)

Danker-Hopfe et al. [239]

Healthy subjects:
94 males, 103 females
Age 20–95 years

Patients:
72 males, 26 females
Age 21–75 years
With sleep disorders
(psychiatric, respiratory
and neurological comorbidities)

Two consecutive PSG nights
EEG (FP2-A1, FP1-A2, C4-A1, C3-A2, O2-A1, O1-A2)
EOG (left, right), EMG (submental), ECG
Respiratory signals: flow, thorax, abdomen SaO2, pulse
Additional signals: additional EEG signals, snoring,
body temperature, body position
Signal sample rates: 256, 200, 128, 64, 16, 8 Hz
R&K hypnograms (consensus scorings) of all recordings and 
reports of respiratory events, arousals and periodic leg movements 
in sleep, database of artefacts, microstructure of sleep (spindles, 
K complexes)
Additional subject information: yes
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used for 2 reasons: first, since there are differences in 
sleep propensity as a function of time of day, and second, 
because multiple assessments of sleep onset latency re-
duce variability. The MSLT has been validated against 
sleep deprivation, sleep disorders, circadian time, and a 
variety of sedating and alerting dugs  [246] . In addition to 
the standardised methodology, there are well-established 
reference norms available for healthy volunteers of differ-
ent ages as well as for a variety of sleep disorders, and the 
MSLT has been adopted as part of the diagnostic criteria 
for some sleep disorders  [247] . Its utility in the clinical 
context is both to define and objectively determine the 
severity of the symptoms of excessive daytime sleepiness, 
as well as to demonstrate multiple sleep onset REM peri-
ods to confirm a diagnosis of narcolepsy.

  A modification of the MSLT is the maintenance of 
wakefulness test (MWT). Variants of the multiple sleep 
latency tests were originally developed with the hypoth-
esis that the ability to fall asleep and the ability to stay 
awake represent different physiological states. There is 
currently no data to support this concept, but the MWT 
is nonetheless often used in clinical trials (e.g. continuous 
positive airway pressure, stimulants)  [248] . Unlike the 
MSLT, which benefits from standardised procedures that 
have been extensively validated as well as the availability 
of norms, there are significant variations in the execution 
of the MWT. In the literature there are MWTs where nap 
tests with durations of 20, 30 or 40 min are performed. 
Increasingly the test is being performed using a 30-min 
nap. However, in healthy volunteers, 30 min without a 
sleep onset is not uncommon. Although originally some 
MWTs had the subjects sitting in chairs, the MWT is now 
increasingly performed with subjects lying in a bed with 
a 45-degree incline. Unlike the MSLT, which is performed 
in darkness, the MWT is carried out in ‘dim light’. Im-
portantly, for the MWT, the subjects are instructed to try 
to stay awake rather than to try to fall asleep. Despite all 
of these differences, both of these tests are, in principle, 
measures of sleep tendency, and qualitatively give similar 
results.

  These tests of sleep tendency are critical in the devel-
opment of stimulant medications as a measure of efficacy, 
and can be used for the assessment of side effects of seda-
tives, as they provide an objective assay. In addition, in 
clinical practice the MSLT serves as an essential element 
in the diagnosis of narcolepsy.

  EEG Source Localisation
  While several neuro-imaging techniques are available 

to explore brain dynamics in humans, including magne-

toencephalography (MEG), positron emission tomogra-
phy (PET) and functional magnetic resonance imaging 
(fMRI), the scalp-recorded EEG combined with post hoc 
source localisation provides the only way to investigate 
non-invasively cortical activities during undisturbed 
sleep with high temporal resolution. The minimal re-
quirement for EEG-based source localisation is the re-
cording of the scalp potential field with at least 19 equal-
ly distributed electrodes.

  The challenge for EEG source localisation methods is 
to provide a unique solution to the inverse problem, try-
ing to find a physiologically meaningful distribution of 
putative generators without prior knowledge of the num-
ber, location or orientation of the actual sources of the 
scalp EEG activity. This inverse solution needs also to be 
independent of the arbitrary choice of the reference elec-
trode.

  Low-resolution brain electromagnetic tomography 
(LORETA) as devised by Pascual-Marqui et al.  [249, 250]  
in 1994 was one of the first attempts to solve both the in-
verse problem and the reference electrode problem. Mean-
while LORETA has received considerable validation from 
studies combining it with other more established localisa-
tion methods, such as fMRI  [251] , structural MRI  [252]  
and PET  [253] . Further LORETA validation has been 
based on comparison with the localisation findings from 
implanted depth electrodes, in a number of studies in ep-
ilepsy  [254]  and on cognitive event-related potentials 
where the activated brain regions are known a priori  [255] . 
One has to be aware that only cortical activities that make 
major contributions to the scalp-recorded EEG can be es-
timated by source localisation, and this means most of the 
deep active sources in the brain are not detectable. This 
limiting factor has to be considered not only in the inter-
pretation of electrophysiological neuro-imaging results, 
but also in studies comparing different neuro-imaging 
methods or in multimodal neuro-imaging approaches.

  In recent years, various new methods have been devel-
oped and validated, partly with simulated and partly with 
real data, to solve the ill-posed inverse problem. These 
source localisation methods comprise, in addition to LO-
RETA, minimum norm estimates (MNE), weighted 
MNE, MNE with focal underdetermined system solution 
(FOCUSS), LORETA with FOCUSS, standardised LO-
RETA (sLORETA), variable resolution electrical tomog-
raphy (VARETA), quadratic regularisation and spatial 
regularisation (S-MAP) using dipole intensity gradients, 
spatiotemporal regularisation (ST-MAP), spatiotemporal 
modelling, the Backus-Gilbert method, weighted resolu-
tion optimisation (WROP), the local autoregressive aver-
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age (LAURA), exact LORETA (eLORETA) and depth-
weighted minimum norm solution as well as shrinking 
methods and multi-resolution methods such as S-MAP 
with iterative focusing, shrinking LORETA-FOCUSS, 
standardised shrinking LORETA-FOCUSS (SSLOFO) 
and adaptive standardised LORETA/FOCUSS. Several 
reviews describe the various methods and their differen-
tial source localisation properties  [256–260] . In a study 
on source modelling of sleep slow-waves, LORETA, 
sLORETA, LAURA and the Bayesian minimum norm 
were applied to a high-density 256-channel sleep EEG re-
cording  [261] . Most interesting from a methodological 
point of view is the finding that all 4 source localisation 
methods revealed similar results. The similar findings for 
the various inverse solutions and the physiologically 
meaningful results obtained from source localisation 
based not only on high-density but also on rather low-
density EEG recordings  [103, 255, 262]  clearly justify the 
utilisation of these methods in pharmaco-sleep studies. 
However, it needs to be stressed that full details of the ap-
plied source localisation method with all its underlying 
assumptions (e.g. head model, regularisation parameters, 
solution space and statistical approaches) needs to be pre-
sented in detail alongside the results to facilitate proper 
comparisons between studies.

  Sleep Models
  Enormous progress was made in research on sleep and 

chronobiology in the second half of the last century. Al-
though sleep and circadian rhythms are closely interre-
lated, both fields developed separately at first because dif-
ferent methodologies were used to study them in the be-
ginning. The primary technique used in sleep research is 
the continuous recording of the EEG and other physio-
logical signals for whole nights. In contrast, the main 
technique of chronobiological research is the continuous 
recording of behaviour (activity/rest), combined with se-
lected physiological variables, mainly deep body temper-
ature. Early chronobiological models were based mainly 
on the interaction of several internal, self-sustained cir-
cadian oscillators  [263] . A new modelling approach 
evolved when, in the 1970s and 1980s, long-term sleep 
recordings were performed for the first time under condi-
tions of temporal isolation, the standard experimental 
setting of chronobiology. The combined use of sleep-EEG 
and circadian data led to the conceptualisation of more 
realistic models.

  It is now widely accepted that the sleep-wake cycle can 
be considered as an active, neurobiologically regulated 
process  [264]  and that it can be modelled with two inter-

acting components, one homeostatic and one circadian 
in nature  [265, 266] .

  The homeostatic, or use-dependent, component can 
be described as a wake dependent growth function which 
dissipates during sleep. It reflects a build-up of sleep need 
during wakefulness and a reverse process during sleep. Its 
intensity can be estimated from parameters of low fre-
quency EEG activity  [265–267] .

  The circadian component can be described as a time-
related sinusoidal function. It reflects a sleep-related pro-
cess which is dependent on the phase of the central circa-
dian pacemaker in the suprachiasmatic nuclei. Phase and 
amplitude can be estimated from hormonal parameters 
like the circadian melatonin profile, or the course of core 
body temperature  [268] .

  This two-process concept proved to be so successful 
that it has been expanded gradually to include also mod-
elling of circadian vigilance and performance variations 
 [269–272] .

  Although the model is well accepted, there is less 
agreement on the nature of the interaction between the 
two components. Their combined effect on sleep has 
been described as a linear (additive) interaction  [269] . Ex-
periments with forced desynchrony protocols, which 
permit systematic dissociation of the circadian and ho-
meostatic parameters  [268]  and studies with suprachias-
matic nucleus-lesioned animals  [273]  indicate that both 
components are to a large extent independent from each 
other, with an interaction that might be interpreted as be-
ing non-linear instead  [270, 274] .

  Moreover, linear interaction fails to adequately model 
two abundantly described characteristics of the sleep-
wake cycle, namely the afternoon nap (or performance 
dip) zone and the evening wake maintenance (or forbid-
den sleep) zone  [275] . An explicit non-linear approach has 
been proposed with a multiplicative interaction, which 
successfully models the four main characteristics of sleep 
propensity across 24 h  [276] .

  Modelling sleep with a circadian and a homeostatic 
component strongly influenced the development of new 
sleep- and vigilance-modulating drugs. Homeostatic pa-
rameters like slow-wave sleep or EEG slow-wave activity 
became a target variable for measuring the effect of hyp-
notics and other drugs on sleep. At the same time chro-
nobiotic drugs (such as e.g. melatoninergic substances) 
were developed, which act quite selectively on circadian 
parameters. It has become increasingly clear that the two 
major components, which regulate the sleep-wake 
rhythm, can be influenced separately by pharmacological 
agents  [277] .
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  This modelling approach also impacts the develop-
ment and selection of adequate study designs. Drugs with 
a potential influence on sleep, and especially on slow-
wave sleep/slow-wave activity, can be tested in the usual 
setting of sleep studies with specific experimental modi-
fications, if necessary (e.g. using sleep deprivation or 
sleep reduction). In contrast, the testing of specific effects 
of potential chronobiotic agents needs designs suitable 
for the study of chronobiology, such as sleep shift, con-
stant routine, forced desynchrony and others. As an ex-
ample, Kräuchi et al.  [278]  tested the effect of an early 
evening (18.00 h) dose of melatonin and S-20098 on the 
circadian phase of different physiological parameters un-
der constant routine conditions. In their study the phar-
macological agents induced an earlier dim-light melato-
nin onset as well as a phase shift in indicators of body 
temperature regulation. There was an earlier increase in 
distal skin temperature at sleep onset and an earlier de-
crease in body core temperature during sleep. Such ef-
fects are to be expected after the application of chronobi-
otic but not hypnotic agents. The results also underline 
the importance of the correct timing of administration of 
a chronobiotic agent for producing an optimal effect. In 
a follow-up study the effects of both active agents on body 
temperature were replicated and it was shown that both 
substances enhanced REM sleep while the EEG in NREM 
sleep, as measured by an analysis of EEG power density, 
remained unaffected  [279] . This latter result is in line 
with the assumption that REM and NREM sleep are reg-
ulated by different mechanisms, as suggested by the mod-
els cited above.

  Sleep Assessment Using Actigraphy
  Activity-based sleep-wake monitoring using acceler-

ometer-based devices (actigraphy) has become a major 
tool in sleep research and sleep medicine  [280]  as a poten-
tial alternative to the neurophysiological techniques de-
scribed above in some pharmaco-sleep studies, particu-
larly when there is a need to assess the rest-activity cycle 
over long time periods. Several reviews have established 
the use of actigraphy as a reliable and valid assessment 
method to document sleep-wake patterns  [32, 281–283] , 
and its strengths and limitations have been thoroughly 
discussed  [280] . Compared to PSG, actigraphy measures 
the physical manifestations of sleep, rather than its neu-
rological basis, and hence provides only estimates of 
sleep-related parameters such as SOL, TST, WASO and 
sleep efficiency in both healthy subjects  [284, 285]  and 
insomnia patients  [286, 287] . Normative data over sev-
eral age groups are available. Actigraphy has been shown 

to distinguish between clinical groups, to identify certain 
sleep-wake disorders, and to document the effects of var-
ious behavioural and medical interventions on sleep-
wake patterns  [288–290] , while limitations have been ob-
served in its ability to detect wakefulness during sleep, 
and hence to assess sleep patterns in clinical populations 
with highly fragmented sleep  [291] . Finally, actigraphy 
has the advantage of providing objective information on 
sleep habits in the patient’s natural sleep environment 
rather than a sleep laboratory  [292] . This enables, for ex-
ample, the examination of sleep patterns during adapta-
tion and re-adaptation to different shift work schedules 
 [293] .

  Modern actigraphs are based on a solid-state acceler-
ometer that measures acceleration (m/s 2 ) in 1–3 dimen-
sions. The firmware in the device samples the accelera-
tion (typically 32 times/s) and mathematically summaris-
es the data collected in each epoch (typically 15 s to 
1 min). Different devices use different algorithms to cal-
culate ‘activity counts’. These include a simple mean of 
the magnitude of the acceleration above a specified 
threshold (to account for gravity), a count of the number 
of peaks or zero-crossings during the epoch, or some 
variation of these methods  [32] . Although actigraphs can 
be worn anywhere on the body, sleep is usually assessed 
with a device worn on the non-dominant wrist. There are 
several different devices available commercially that have 
been certified as suitable for medical investigation (e.g. 
through CE marking as a medical device, or FDA medical 
device registration) and that can collect data for up to 
several months, depending upon the epoch length. Many 
consumer devices are also commercially available which 
do not carry medical certification. Although some con-
sumer devices may offer good performance, such devices 
should, in general, be used with caution in clinical trials 
as their reproducibility, particularly between devices, 
may not be well characterised.

  A methodological issue repeatedly raised is the lack of 
standard equipment, analytical methods and reporting, 
thereby impeding the comparison of findings and con-
clusions across studies. The major methodological chal-
lenge when using actigraphy concerns the procedures 
used for data sampling, processing and analysis  [294] . 
This problem is worsened by the difficulty faced when 
trying to compare the performance of different devices 
and algorithms  [285, 295] . To improve this situation, 
some investigators have used more direct activity end-
points, such as mean activity during the night, to avoid 
having to make assumptions about the subject’s sleep/
wake status  [296, 297] .
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  While actigraphy has predominantly been used in the 
field of sleep research and chronobiology, there is a grow-
ing body of evidence for its utility to measure drug effects 
in clinical trials, as reviewed by Stanley  [298] . The effects 
of psycho-active drugs have been described over long 
time periods by comparing treatments  [299]  or by mea-
suring nocturnal and daytime motor activity  [300] . Ac-
tigraphy has been used to assess and quantify the day-
time sedative effects of tricyclic antidepressants, which 
were positively correlated with both the subjective rat-
ings of tiredness and the impaired cognitive and psycho-
motor performance  [301] , to investigate the effect of hyp-
notics on nocturnal motor activity  [296] , and to quantify 
the night-time sleep-promoting effects of zolpidem ad-
ministered in a clinical research unit environment  [297] . 
Actigraphy has been shown to be sensitive enough to de-
tect sleep changes during periods of temazepam admin-
istration and withdrawal in patients suffering from in-
somnia  [289] , to trace low physical activity and altered 
sleep in patients with schizophrenia treated with olan-
zapine or risperidone  [302]  and to measure improve-
ments in total sleep time in patients with restless leg syn-
drome treated with pregabalin  [303] . The effects of mel-
atonin and zopiclone in a placebo-controlled protocol 
using actigraphy with air crew members coping with ad-
aptation by transatlantic flights and time zone changes 
confirmed the results previously obtained in a labora-
tory setting  [304] .

  In the context of clinical trials, one of the major advan-
tages of actigraphy lies in the fact that it is possible to 
continuously measure and monitor activity over several 
weeks (longitudinal monitoring). As sleep deficits alter 
sleep architecture and thereby interfere with drug effects, 
actigraphy is a suitable method to identify subjects with 
irregular sleep patterns and hence to exclude them from 
PSG studies. Therefore, where this is a particular con-
cern, the use of actigraphy should be considered for at 
least 1 week prior to a stationary PSG recording session 
to document the habitual sleep-wake activities of the sub-
jects involved and to detect possible underlying sleep 
problems, or non-compliance with the lifestyle guide-
lines defined in the study protocol.

  Practice parameters have been developed by task forc-
es commissioned by the AASM for the use of actigraphy 
in the assessment of sleep, circadian rhythms and sleep 
disorders  [305, 306] . The recommendations are based on 
a comprehensive review of the literature and should serve 
as guidance for the appropriate use of actigraphy in phar-
maco-sleep studies (clinical trials). To ensure that results 
of a study can be compared with those of other published 

studies, publications should report the set of metadata 
listed in  table 6  as a minimum along with the study re-
sults.

  Although PSG is the acknowledged ‘gold standard’ for 
assessing sleep, one needs to consider that its usefulness 
in some situations is limited by the complexity of the 
equipment, its cost and hence its inability to assess long-
term sleep-wake patterns. Patient-reported outcomes or 
sleep questionnaires have the advantage of being low-cost 
and they can be used for many nights at home to record 
the subjects’ perception of their sleep, but the disadvan-
tage of being subjective. The objectivity of actigraphy 
combined with the ability to make long-term assessments 
of sleep-wake patterns in the home environment at a low-
er cost than PSG makes it an attractive method for assess-
ing and quantifying the effects of treatments on sleep. 
However, actigraphy does not measure the neurological 
aspects of sleep but rather it measures immobility/mobil-
ity as physiological and behavioural manifestations of the 
sleep-wake cycle, and this leads to limitations. In the ab-
sence of the perfect sleep measurement system, investiga-
tors need to be mindful of the strengths and weaknesses 
of each assessment tool when choosing which method to 
use in a particular study.

  EEG Biomarkers and Translational Medicine
  According to the definition formalised by the Bio-

markers Definitions Working Group  [307] , a biomarker 
is ‘a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, patho-
genic processes, or pharmacologic responses to a thera-
peutic intervention’, whereas a surrogate endpoint is ‘a 
biomarker that is intended to substitute for a clinical end-
point’. In addition, the term endophenotype refers to ‘a 
set of quantitative, heritable, trait-related, state-indepen-
dent and family-associated characteristics of a disorder 
typically assessed by biochemical, endocrine, neuroana-
tomical, neurophysiological, neuropsychological, and 
other methods’  [308] . In other words, biomarkers are ob-
jectively measured indices of pharmacological responses 
(or biological processes) that are quantifiable, precise, 
and reproducible. As such, biomarkers may be used to 
answer a number of questions in clinical research (mark-
ers for diagnosis, progression or staging of a disease, sub-
typing of patients) or in the drug development process 
(efficacy markers distinguishing between treatment re-
sponders and non-responders, effectiveness markers 
which can be used to monitor therapeutic improvement, 
markers that can be used for assessing bioavailability or 
central penetration of the drug, or for PK/PD modelling, 
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markers reporting on the pharmacological mechanism of 
action or on potential safety risks of a drug). Biomarkers 
play an increasingly important role in the drug develop-
ment process. If they have translational validity, meaning 
that they provide measures of drug action that are con-
sistent across species boundaries, they are particularly 
useful in guiding the design of clinical study programmes 
based on preclinical findings.

  Pharmaco-sleep studies are important in characteris-
ing the effect of CNS-active drugs since a favourable (or 

unfavourable) influence on sleep initiation, continuity 
and architecture has a major impact on the clinical use of 
any drug. Unwanted drug effects on sleep are not neces-
sarily problematic for drug development, especially when 
the effects are transient and diminish with repeated dos-
ing, provided this transient effect is understood. In any 
case, pharmaco-sleep effects are very suitable PD bio-
markers for CNS-active drugs, which can be monitored 
easily in acute dosing studies. An important advantage of 
pharmaco-sleep studies is the highly preserved sleep ar-

  Table 6.  Minimum set of requirements for the use of actigraphy in clinical trials

 Instrumentation 
 I

  I

  I 

 Registered trademark of the devices
  Version of the software embedded in the devices
  Placement of the actigraphs (worn on the wrist of the non-dominant hand with the monitor in the upside position is recommended) 

 –
  

  – 

 For long-time and repeated recordings a given subject should always use the same actigraph (recommended, unless data confirming
sufficient interdevice consistency is available and appropriate quality control is included in the study)

  Actigraphs are classified as a class I medical device and must carry a certification (at least CE classified in Europe or FDA for the USA) 

 Sleep/wake diary 
 – 
  –  

 Actigraphy recording always combined with a diary
  Time and date of every removal of the unit has to be documented (e.g. when taken off during bathing and showering) 

 Data sampling 
 I

  I

  I 

 Duration of data collection (minimum should be 1 week)
  Epoch length (below 1 min, 30 s being recommended)
  Mode of data collection (e.g. ZCM, TAT, PIM, or TRI mode) 

 Data processing and analysis 
 – 
  – 
  –  

 Validated procedure for initialising the devices, downloading datasets and storing files
  Quality control by visual inspection of the raw data to detect technical failures and other anomalies
  Documented procedure for handling missing data 

 I

  I

  I

  I

  I 

 If the scoring is accomplished by different individuals, reliability procedure and percent agreement between scorers is to be reported
  Software (and version) used for data scoring
  Algorithm used for data processing (e.g. filtering, smoothing)
  Algorithm used to delineate sleep/wake and activity/rest segments
  Selected variables 

 Reporting 
 I

  I

  I 

 Graphs should report days of the week and months (by name)
  Number of sleep and activity intervals included (single, multiple, intra-individual mean, group mean)
  If recordings were impacted by clock time change due to daylight saving and a manual correction made, this must be reported 

 Extracted endpoints (parameters) 
 I

  I

  I

  I

  I 

 aTRT = Total recording time (min)
  aTST = Total total sleep time (min)
  aWASO = Time awake after sleep onset (min)
  aSE = Sleep efficiency (%) expressed as aTST/aTRT
  When reporting group (i.e. treatment) results, the endpoints should be reported using mean, standard deviation, median, first and 
third quartiles, and trimean 

 The summary includes items of procedural nature (–) and the set of information to be reported in publications (I).
  ZCM = Zero Crossing Mode; TAT = Time Above Threshold; PIM = Proportional Integrating Measure; TRI = Trimode (ZCM, TAT 

and PIM). The prefix ‘a’ used to identify the actigraphy-extracted endpoints is aimed at ensuring that actigraphy- vs. PSG-derived pa-
rameters are easily identified. 
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chitecture across most mammalian species, despite dif-
ferences in sleep duration and timing, as well as the con-
sistency of most drug effects on sleep architecture, mak-
ing translational pharmaco-sleep studies a first class 
provider of translational biomarkers for CNS-active 
drugs. Sleep-EEG characteristics prove to be very sensi-
tive indices of a drug’s CNS activity that offer interesting 
biomarker options for translational medicine including 
PK/PD relationships  [309, 310] . Although sleep is dis-
rupted in several psychiatric disorders (and their animal 
models), pharmaco-sleep biomarkers do not need to be 
disease specific in order to be valuable in drug discovery. 
Drug-induced changes in sleep-wake patterns and asso-
ciated EEG spectra in healthy animals and human volun-
teers have been successfully used to characterise novel 
CNS-active drugs as potential therapeutic agents for dif-
ferent CNS disorders in a probabilistic manner (71–95%) 
 [311, 312] .

  Over the past several decades there has been consider-
able effort in exploring the utility of sleep parameters and 
EEG measures of sleep as reliable and sensitive biomark-
ers in many areas, despite an inherent lack of specificity 
which necessitates careful interpretation [for a review, see 
 22, 313 ], including:
  • major depressive disorder  [314, 315] ; the high sensitiv-

ity of sleep architecture changes in depression makes 
it one of the most important biological markers in psy-
chiatry. In this way sleep changes have been used as 
an endophenotype and/or vulnerability biomarkers in 
family studies of depression  [316–318] ;

  • prediction of antidepressant treatment responses in 
major depressive disorder patients  [314, 319, 320]  and 
more generally as a biomarker for the effects of all 
classes of antidepressants  [20, 321–323] ;

  • posttraumatic stress disorder  [324–326] , schizophre-
nia  [327, 328] , and other psychiatric and neurodegen-
erative disorders  [329, 330] ;

  • self-administration of sleep-promoting drugs  [331] ;
  • genotype-dependent difference in the response to 

sleep deprivation  [332, 333] ;
  • effect of illicit recreational drugs (cocaine, ecstasy and 

marijuana) upon sleep  [334] ;
  • general cognitive and learning abilities  [102] .

  It is clear that sleep disturbances are core symptoms of 
mood disorders, and as such they are an integral part of 
the diagnostic criteria for major depression. Several sleep-
EEG characteristics have been examined in terms of their 
predictive utility and a number of studies have demon-
strated strong evidence that one of the most important 
markers of major depressive disorder is a shorter REM 

latency, a prolonged first REM period, and an increased 
REM density  [22] . Moreover, the persistence of these de-
viant measures was found to be a prognostic indicator of 
an unfavourable course of the disease  [335] . These chang-
es could be, therefore, considered intermediate pheno-
types between the genetic and biochemical cause of the 
disease and the complex psychological and behavioural 
manifestations of the symptoms of depression. Most an-
tidepressants suppress REM sleep in humans and ani-
mals, but REM suppression is not a prerequisite for a sub-
stance to act as an antidepressant. Thus, the identifica-
tion of a sleep-EEG variable or a cluster of such variables 
which can be used to screen substances for their antide-
pressant potential and/or for the further characterisation 
of subgroups of depressed patients with different thera-
peutic responses to antidepressant drugs remain impor-
tant research targets  [314] .

  It should be noted, however, that not all results of clin-
ical pharmaco-sleep studies are in agreement, mostly due 
to various methodological issues and diagnostic uncer-
tainties in psychiatric patients: the number of consecutive 
nights patients are studied; whether they are studied in 
their home environment or in a sleep laboratory; the way 
that the time between sleep onset and REM sleep onset 
(REM sleep latency) is determined; the definition of in-
creased REM density; whether concurrent use of psycho-
tropic drugs is allowed and whether there are differences 
in the required duration of withdrawal from psychotro-
pic medications; variation in sleep schedules; severity of 
the illness, and problems caused by potential differences 
in patient populations due to the overlap of symptoms 
among various disorders as described in the Research Di-
agnostic Criteria, the DSM-IV, as well as in other classi-
fication systems for mental disorders  [13] .

  Animal models of normal and disordered sleep gen-
erally focus on the primary endpoints of clinical inter - 
est – sleep onset, sleep architecture, sleep EEG spectra – 
and sometimes also next-day effects, such as sleepiness, 
cognition, metabolism etc. Few comparative studies have 
quantified which sleep variables of psychotropic drugs 
are more or less similar between species. Recent studies 
have extended these analyses with PK/PD modelling, 
showing that sleep quantitative EEG and PSG character-
isation of novel compounds in rodents and primates are 
useful models to predict PK/PD relationships for these 
biomarkers in humans  [336] .

  Psychiatric and neurological disorders are associated 
with a constellation of characteristic pathophysiological 
changes. These can result in changes in EEG activity in 
the resting state or during certain phases of the sleep-
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wake cycle, or in alterations to the brain’s electrophysio-
logical response to sensory stimuli or endogenous cog-
nitive processing. These abnormal neurophysiological 
mechanisms may be considered as endophenotypes, and 
can be utilised for developing disease-relevant animal 
models and translatable biomarkers  [337–340] . Trans-
genic animal models focused on sleep and circadian 
rhythms offer the potential to identify novel genes and 
genetic pathways underlying sleep disorders. Translat-
ability of mouse mutants appears to be robust as many of 
the mutants expected to have circadian effects or sleep 
alterations, based on established human pharmacology, 
do in fact show effects that are consistent with pharma-
cology in man and animal models  [336] .

  Successful application of translational research led to 
the identification of animal gene polymorphisms associ-
ated with altered circadian rhythmicity or sleep homeo-
stasis which have subsequently been found to alter sleep 
in healthy people or have been associated with circadian 
rhythm sleep disorders, narcolepsy or restless leg syn-
drome  [309, 341] . There are also several animal models 
potentially suitable for translational research of sleep dis-
orders, including those for primary insomnia  [342, 343] , 
obstructive sleep apnoea  [344] , restless leg syndrome 
 [345] , narcolepsy  [346] , and in disease-related sleep dis-
turbance such as Huntington’s disease  [347] , Parkinson’s 
disease  [348, 349] , Alzheimer’s disease  [350, 351] , bipolar 
disorder  [352, 353] , and epilepsy  [354] .

  In conclusion, sleep is the physiological manifestation 
of a complex interplay between several of the most impor-
tant neurotransmitter systems in the brain. Consequently, 
sleep-EEG variables have proven to be suitable as transla-
tional biomarkers for sleep-related changes in neuropsy-
chiatric disorders, prediction of treatment response and 
for the elucidation of the mechanism of action of drugs on 
the CNS in general, as well as on the sleep/wake architec-
ture in particular. Though the application of sleep EEG is 
often restricted to studies with small numbers of patients, 
the similar physiology of sleep regulation in rodents and 
humans suggests that changes in sleep microarchitecture 
could be used also as translatable biomarkers for the eval-
uation of novel treatment targets  [355] .

  However, despite the substantial progress in transla-
tional research of sleep disturbances in various disorders, 
and sleep disorders in particular, several obstacles re-
main for animal sleep research including:
  • the need for surgical implantation of EEG and EMG 

electrodes in animals and the time-consuming inter-
pretation of recordings;

  • the lack of fully objective, automatic, high throughput 
and yet sensitive methods to assess sleep in hundreds 
of animals at a time;

  • a lack of standardisation of animal EEG methodology 
and sleep classification across academic research cen-
tres and the pharmaceutical industry, but also across 
different animal species;

  • limited potential for deriving spatial information from 
animal sleep EEG due to the small number of elec-
trodes;

  • the lack of fully automated and objective artefact de-
tection and reduction algorithms in animal sleep EEG 
spectral analysis;

  • the lack of specific guidelines for animal quantitative 
EEG and animal pharmaco-sleep EEG recording;

  • the need for more research to characterise the sleep-
disruptive effects of specific environmental factors or 
methodological procedures on animal sleep-waking 
behaviour;

  • lack of a full description of the anatomical, pharmaco-
logical and genetic correlates of sleep and waking be-
haviour; despite some recent advances in this area, 
there is still much to be uncovered.
  In this context, it becomes crucial that efforts are made 

in the standardisation of experimental conditions and in 
the development of protocols facilitating the comparison 
of data collected in both man and animals between dif-
ferent centres. Specific guidelines for preclinical, animal 
pharmaco-EEG recording and analysis are in preparation 
for publication by the IPEG.

  Application of novel recording devices and advanced 
computational techniques in translational research will 
provide more detailed data on the micro-architecture of 
sleep and it is expected that more subtle sleep changes and 
accurate biomarkers will be detected with further opti-
misation of the translational value of pharmaco-sleep 
EEG in the near future.

  Conclusion

  Quantitative EEG and related methods have the po-
tential to offer reliable biomarkers and will, in view of the 
recent developments of quantitative EEG technology, 
play an increasingly important role in preclinical re-
search and in all phases of clinical drug development. 
The evaluation and quantification of drug effects using 
EEG, sleep and evoked potentials/event-related potentials 
(EP/ERP) provides a set of methods to capture the phar-
macological activity, therapeutic benefits and potential 
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adverse effects that a drug induces in diverse patient pop-
ulations. By combining various methods and their re-
spective strengths, it is reasonable to argue that they will 
provide a more complete characterisation of the spec-
trum of pharmacological CNS responses of known and 
novel therapeutic drugs  [22] .

  In this context, it is mandatory to enhance and stan-
dardise recording, analysis and study design methodolo-
gies to facilitate the comparability of data across labora-
tories both in academia and in industry. To this end, in-
vestigators using pharmaco-sleep methodology are urged 
to refer to and comply with the guidelines presented here 
when designing and conducting studies, and to reference 
the present paper when publishing study results.
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